
Sapera LT™ 8.60
User's Manual

P/N: OC-SAPM-USER0
www.teledynedalsa.com

sensors | cameras | frame grabbers | processors | software | vision solutions

http://www.teledynedalsa.com/

NOTICE

© 2020 Teledyne Digital Imaging, Inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either

electronic or mechanical, without the express written permission of TELEDYNE DALSA. Every effort

is made to ensure the information in this manual is accurate and reliable. Use of the products

described herein is understood to be at the user’s risk. TELEDYNE DALSA assumes no liability

whatsoever for the use of the products detailed in this document and reserves the right to make

changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows®, Windows® 7, Windows® 8 and Windows® 10

are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Printed on October 1, 2020

Document Number: OC-SAPM-USER0

Printed in Canada

About This Manual

This manual exists in Windows Help, and Adobe Acrobat® (PDF) formats (printed manuals are

available as special orders). The Help and PDF formats make full use of hypertext cross-references.

The Teledyne DALSA home page on the Internet, located at

http://www.teledynedalsa.com/imaging, contains documents, software updates, demos, errata,

utilities, and more.

About Teledyne DALSA

Teledyne DALSA, a business unit of Teledyne Digital Imaging Inc., is an international high

performance semiconductor and electronics company that designs, develops, manufactures, and

markets digital imaging products and solutions, in addition to providing wafer foundry services.

Teledyne Digital Imaging offers the widest range of machine vision components in the world. From

industry-leading image sensors through powerful and sophisticated cameras, frame grabbers,

vision processors and software to easy-to-use vision appliances and custom vision modules.

http://www.teledynedalsa.com/imaging

Sapera LT User's Manual Contents • i

Contents
SAPERA LT ARCHITECTURE 4

APPLICATION ARCHITECTURE .. 4
Library Architecture .. 4

DEFINITION OF TERMS .. 6
SAPERA LT ++ AND SAPERA LT .NET CLASSES ... 7

Sapera LT ++ Basic Classes by Subject... 7
Sapera LT .NET Basic Classes by Subject... 8
Sapera LT ++ and Sapera LT .NET Class Descriptions 9

TRIGGER-TO-IMAGE-RELIABILITY FRAMEWORK 13
TELEDYNE DALSA ACQUISITION DEVICE FUNCTIONAL ARCHITECTURE 13
WHAT IS TRIGGER-TO-IMAGE RELIABILITY (T2IR)? ... 14
T2IR WITH A TYPICAL APPLICATION .. 14
EEMENTS OF TRIGGER-TO-IMAGE RELIABILITY FRAMEWORK .. 15
THE RIGHT TARGET IMAGE ACQUISITION .. 16
MANAGING EXTERNAL TRIGGERS .. 19
TRACKING AND TRACING IMAGES ... 21
MONITORING THE ACQUISITION PROCESS ... 23

Sapera Events ... 23
OVERCOMING TOO MUCH DATA ... 25
ADVANCED DIAGNOSTICS .. 27

Sapera Monitor .. 27
External LEDs .. 28
Sapera LogViewer .. 28
Sapera PCI Diagnostic Tool ... 30
Xtium Frame Grabber Diagnostic Tool ... 31
Diagnostic Tool Main Windo ... 31

SAPERA LT API OVERVIEW 33
THE THREE SAPERA LT APIS .. 33
SAPERA LT ++ – CREATING AN APPLICATION .. 33
SAPERA LT .NET – CREATING AN APPLICATION .. 33
SAPERA LT ++ – OBJECT INITIALIZATION AND CLEANUP ... 33

Example with SapBuffer Class Objects .. 33
SAPERA LT .NET – OBJECT INITIALIZATION AND CLEANUP ... 34

Example with SapBuffer Class Objects in C#: .. 34
Equivalent Code for Visual Basic .NET: .. 35
Equivalent Code for C++: ... 35

SAPERA LT ++ – ERROR MANAGEMENT ... 36
Setting the Current Reporting Mode .. 36
Monitoring Errors ... 36

SAPERA LT .NET – ERROR MANAGEMENT ... 37
Setting the Current Reporting Mode .. 37
Monitoring Errors ... 39

CAPABILITIES AND PARAMETERS... 40
What is a Capability? .. 40
What is a Parameter? ... 40

ACQUIRING IMAGES 41
REQUIRED CLASSES ... 41
FRAME-GRABBER ACQUISITION – REQUIRED STEPS ... 41
SAPERA LT ++ – SAMPLE ACQUISITION CODE ... 41

Example Program using Sapera LT ++ .. 42

ii • Contents Sapera LT User's Manual

SAPERA LT .NET – SAMPLE ACQUISITION CODE ... 43
Example Program using C# ... 43
Equivalent Program using Visual Basic .NET ... 44
Equivalent Example using C++ .. 45

SAPERA LT ++ – MODIFYING FRAME-GRABBER PARAMETERS 46
Modifying Parameters Individually .. 46
Triggered Acquisition Example ... 46
Modifying Parameters by Group ... 46

SAPERA LT .NET – MODIFYING FRAME-GRABBER PARAMETERS 47
Modifying Parameters Individually .. 47
Triggered Acquisition Example ... 48
Modifying Parameters by Group ... 48

SAPERA LT ++ – USING AN INPUT LOOKUP TABLE .. 49
Sample Code ... 49

SAPERA LT .NET – USING AN INPUT LOOKUP TABLE .. 50
Sample Code for C# ... 50
Equivalent Code for Visual Basic .NET ... 51
Equivalent Code for C++ ... 51

SAPERA LT ++ – CAMERA ACQUISITION EXAMPLE ... 51
Sample Code ... 52

SAPERA LT .NET – CAMERA ACQUISITION EXAMPLE ... 53
Sample Code for C# ... 53
Equivalent Code for Visual Basic .NET ... 54
Equivalent Code for C++ ... 55

SAPERA LT ++ – MODIFYING CAMERA FEATURES .. 56
Accessing Feature Information and Values ... 56
Writing Feature Values by Group .. 60

SAPERA LT .NET – MODIFYING CAMERA FEATURES.. 61
Accessing Feature Information and Values ... 61
Writing Feature Values by Group .. 69

DISPLAYING IMAGES 71
REQUIRED CLASSES ... 71
DISPLAY EXAMPLES.. 71

Example using the Sapera LT ++ API ... 71
Example Code for C# using Sapera LT .NET ... 72
Equivalent Code for Visual Basic .NET using Sapera LT .NET 72
Equivalent Code for C++ using Sapera LT .NET .. 72

SAPERA LT ++ – DISPLAYING IN A WINDOWS APPLICATION 73
Sample Code Using the Visual C++'s MFC library 73

SAPERA LT .NET – DISPLAYING IN A WINDOWS APPLICATION 74
Partial C# Listing of a Windows Form Application 75
Equivalent Code for Visual Basic .NET ... 76
Equivalent Code for C++ ... 77

WORKING WITH BUFFERS 78
ROOT AND CHILD BUFFERS .. 78

Sapera LT ++ Example – Parent Buffer with Two Children 78
BUFFER TYPES ... 81
MULTIFORMAT IR BUFFERS .. 82
READING AND WRITING A BUFFER .. 83

Sapera LT ++ – Access of a Buffer Object ... 83
Sapera LT .NET – Access of a Buffer Element ... 84
Sapera LT .NET – Access of a Buffer by an Array of Elements 86
Sapera LT .NET – Access of a Buffer via a Pointer 88

PROCESSING BUFFERS .. 89
Buffer State ... 90
Auto-Empty Mechanism .. 90

Sapera LT User's Manual Contents • iii

Transfer Cycling Modes ... 91
Execution flow for processing and displaying images 95

SAPFLATFIELD COEFFICIENT CALIBRATION 98
Flat Field File Format .. 99
Flat Field Correction Formula ... 99

OFFSET COEFFICIENTS .. 100
GAIN COEFFICIENTS .. 100
PIXEL REPLACEMENT .. 101
TO CALIBRATE THE CAMERA’S FLAT FIELD COEFFICIENTS: .. 101
CODE SAMPLES USING SAPERA LT .. 102

DEPLOYING A SAPERA APPLICATION 103
RUNTIME INSTALLATIONS .. 103

Installing Sapera LT Runtimes and Sapera LT Compatible Drivers 103
TELEDYNE DALSA INSTALLERS ... 104

Silent Mode Installation ... 105
Silent Mode Uninstall .. 107

COMPILER RUN-TIME REDISTRIBUTION ... 108

CONTACT INFORMATION 109
SALES INFORMATION .. 109
TECHNICAL SUPPORT .. 109

4 • Sapera LT Architecture Sapera LT User's Manual

Sapera LT Architecture

Application Architecture
Whichever API is used (Sapera LT ++, Sapera LT .NET, or Standard C), the Sapera LT modular

architecture allows applications to be distributed on different Sapera LT servers. Each server can

run either on the host computer or on a Teledyne DALSA device. Sapera LT calls are routed to

different servers via the Sapera LT messaging layer in a fashion completely independent of the

underlying hardware.

Library Architecture

The typical machine vision application requires configuration of acquisition resources, image

capture and transfer to memory buffers. These image buffers can then be processed or displayed,

analyzed, with results determining subsequent processes. Events can also be monitored to trigger

appropriate responses. The Sapera LT library architecture is organized around these basic machine

vision functional blocks.

The following block diagram, while not exhaustive of all the classes available in Sapera LT,

illustrates the major functional blocks with the corresponding classes.

Sapera LT User's Manual Sapera LT Architecture • 5

The Sapera LT ++ and Sapera LT .NET Programmer’s Manuals provide a complete reference

for all classes in the Sapera API.

It is always recommended to use the source code provided with the demos and

examples as both a learning tool and a starting point for your applications. For a

complete list and description of the demos and examples included with Sapera LT see

the Sapera LT Getting Started for Frame Grabbers Manual and Sapera LT Getting

Started for GigE Cameras and 3D Sensors Manual.

6 • Sapera LT Architecture Sapera LT User's Manual

Definition of Terms
What is a server?

A Sapera LT server is an abstract representation of a physical device like a frame grabber, a

processing board, a GigE camera or a desktop PC. In general, a Teledyne DALSA board is a server.

Some processing boards, however, may contain several servers; this is true when using multi-

processor boards.

A server allows Sapera LT applications to interact with the server’s resources.

What is a static resource?

Resources attached to a physical device are called static resources. For example, a frame grabber

can have an acquisition resource and a transfer resource. These resources can be manipulated to

control a physical device through a Sapera LT server.

What is a dynamic resource?

A dynamic resource is an abstract representation of data storage (such as a buffer, lookup table,

and so forth), or links that connect the data storage to static resources. Unlike static resources,

dynamic resources are not dependent on physical devices; therefore, users on a specified server

can freely create dynamic resources.

What is a module?

A module is a set of functions used to access and/or control a static or a dynamic resource. The

complete Sapera LT Standard C API is composed of a series of modules organized in a particular

architecture. See the Sapera Basic Modules Reference Manual for details.

Sapera LT ++ as a series of C++ classes or Sapera LT .NET as a series of .NET classes,

encapsulate all of these concepts to offer the following benefits compared to the Standard API:

• Easier server management

• Consistent programming interface for static and dynamic resources

• Grouping of modules inside one class whenever appropriate

See the Sapera LT ++ Programmer’s Manual for a hierarchy chart of all the Sapera LT ++ classes.

See the Sapera LT .NET Programmer’s Manual for details on the Sapera LT .NET Framework for

Visual Studio.

Sapera LT User's Manual Sapera LT Architecture • 7

Sapera LT ++ and Sapera LT .NET Classes
This section provides information on Sapera LT ++ classes and Sapera LT .NET classes. Class

grouping diagrams are presented for each API followed by class descriptions which are often

common to both Sapera LT ++ and Sapera LT .NET.

Sapera LT ++ Basic Classes by Subject

The following figure shows the main Sapera LT ++ classes that implement access to the Standard

API module resources, as well as their relationship to other classes.

Processing Classes

I/O Classes Legacy ClassesDisplay & Graphics

Classes

Buffer Classes Transfer Classes

Acquisition Classes

Camera SpecificFrame-Grabber Specific

General Classes

SapCab

SapLocation

SapDisplay

SapPerformance

SapBuffer

SapBufferWithTrash

SapFeature

SapAcqDevice

SapDsp

SapPixPro

SapXferNode

SapTransfer

SapBufferRemote

SapXferPair

SapGraphic

General

SapLut

SapXferCallbackInfo

SapCounterCallbackInfo

SapPixProParams

SapXferParams

SapView

Specialized Transfer Classes

(SapXXXToYYY)

SapGio

SapCounter

SapProCallbackInfo

SapAcqCallbackInfo

SapGioCallbackInfo

SapManCallbackInfo

SapViewCallbackInfo

SapData

Data Classes

(SapDataXXX)

SapBufferRoi

SapFlatFieldSapAcqDeviceCallbackInfo

SapAcquisition

SapProcessing

SapManager

SapBayer

SapColorConversion

SapMetadata

SapXferFrameRateInfo

8 • Sapera LT Architecture Sapera LT User's Manual

Sapera LT .NET Basic Classes by Subject

Below is a diagram along with a brief description of the main Sapera LT .NET classes, as well as

their relationship to other classes.

Transfer Classes

SapXferPair

SapXferNotifyEventArgs

SapXferParams

Processing ClassesI/O ClassesDisplay & Graphics

Classes

Buffer Classes

Acquisition Classes

Camera SpecificFrame-Grabber Specific

General Classes

SapBuffer

SapBufferWithTrash

SapXferNode

SapTransfer

General

SapLut

Specialized Transfer Classes

(SapXXXToYYY)

SapBufferRoi

SapFlatField

SapColorConversion

SapMetadata

SapLocation

SapException

SapData

Data Classes

(SapDataXXX)

SapManager SapServerNotifyEventArgs

SapResetEventArgs

SapResetEventArgs

SapServerFileNotifyEventArgs

SapAcqNotifyEventArgs

SapAcquisition

SapSignalNotifyEventArgs SapFeature

SapAcqDevice

SapAcqDeviceNotifyEventArgs

SapDisplay

SapGraphic

SapView

SapDisplayDoneEventArgs

SapGio

SapGioNotifyEventArgs

SapPerformance

SapProcessingDoneEventArgs

SapProcessing

SapXferFrameRateInfo

Sapera LT User's Manual Sapera LT Architecture • 9

Sapera LT ++ and Sapera LT .NET Class Descriptions

Sapera LT class descriptions cover the purpose of each class and mention any associated Sapera

class used. Most classes apply to both C++ and .NET. Classes that are specific to an API are

grouped together.

C++/.NET Class Description

SapAcqDevice The SapAcqDevice class includes the functionality to control an

acquisition device on any Teledyne DALSA camera (for example, Genie

M640). It is used as a source transfer node to allow data transfers from

an acquisition resource to another transfer node, such as SapBuffer. It is

used by the SapTransfer class.

SapAcqToBuf,

SapAcqDeviceToBuf,

SapBufToBuf,

SapMultiAcqToBuf

These specialized transfer classes are a set derived from SapTransfer

that allow easy creation of the most commonly used transfer

configurations.

For example, setting up a transfer configuration from a SapAcquisition

object (frame grabber) to a SapBuffer object normally requires many

lines of code which call various functions in the SapTransfer class. Using

the specialized class SapAcqToBuf instead reduces this to just one line of

code.

SapAcquisition The SapAcquisition class includes the functionality to control an

acquisition device on any Teledyne DALSA board with an acquisition

section (for example, X64 Xcelera-CL PX4). It is used as a source

transfer node to allow data transfers from an acquisition resource to

another transfer node, such as SapBuffer. It is used by the SapTransfer

class.

SapBuffer The SapBuffer class includes the functionality to manipulate an array of

buffer resources. A SapBuffer object can be used by a SapTransfer

object as a destination transfer node to allow data transfers from a

source node, such as SapAcquisition or SapAcqDevice. It may also be

used as a source transfer node to allow transferring data to another

SapBuffer. A SapBuffer object can be displayed using the SapView class

and processed using the SapProcessing class.

SapBufferRoi The purpose of the SapBufferRoi class is to create a rectangular region of

interest (ROI) inside an existing SapBuffer object. The ROI has the same

origin and dimensions for all buffer resources in the object.

SapBufferWithTrash The SapBufferWithTrash class creates an additional resource called the

trash buffer used when transferring data in real-time applications.The

trash buffer is an emergency buffer used when the data transfer is faster

than a processing task performed on the buffers. When processing is not

fast enough to keep up with the incoming data, images are transferred

temporarily into the trash buffer until stability is reestablished.

SapColorConversion The purpose of the SapColorConversoin class is to support Bayer

conversion on images acquired from a camera, as well as other color

image formats. When using any Teledyne DALSA board with an

acquisition section, this class supports the colorr conversion function

within the acquisition hardware, if available. Else this class also supports

software-based conversion executed on the host PC.

10 • Sapera LT Architecture Sapera LT User's Manual

SapData and

SapDataXxx

SapData and its derived classes act as wrappers for Sapera LT data

types, where each class encapsulates one data element of a specific

type. They are used as property values, method arguments, or return

values in various Sapera LT ++ and Sapera LT .NET classes.

SapDisplay The SapDisplay class includes functionality to manipulate a display

resource on the system display device (your computer video card) or any

Teledyne DALSA board supporting a display section. There is at least one

such resource for each display adapter (VGA board) in the system.Note

that SapView objects automatically manage an internal SapDisplay

object for the default display resource. However, you must explicitly

manage the object yourself if you need a display resource other than the

default one.

SapFeature The SapFeature class includes the functionality to retrieve the feature

information from the SapAcqDevice class. Each feature supported by the

SapAcqDevice class provides a set of properties such as name, type,

access mode, and so forth, that can be obtained through the feature

module.

SapFlatField The purpose of the SapFlatField class is to perform flat-field correction

on images acquired from a camera or loaded from a disk. It supports this

functionality both from the acquisition hardware (if supported) or from a

software implementation.

SapGio The purpose of the SapGio class is to control a block of general inputs

and outputs—a group of I/Os that may be read and/or written all at

once.

SapLocation The SapLocation class identifies a Sapera server/resource pair.

SapLut The SapLut class implements lookup table management. It is usually

used together with the SapAcquisition and SapView classes to

respectively manipulate acquisition and display lookup tables.

SapManager The SapManager class includes methods for describing the Sapera

resources present on the system. It also includes error management

capabilities.

SapMetadata The SapMetadata Class provides functions to manage GigE-Vision

camera metadata (for Genie-TS and Linea GigE). When enabled,

supported metadata (for example, the timestamp or device ID) is

contained in the SapBuffer object.

SapPerformance The SapPerformance class implements basic benchmarking functionality.

It is used by the SapProcessing Class to evaluate the time it takes to

process one buffer. You may also use it for your own benchmarking

needs.

SapProcessing The SapProcessing class allows you implement your own processing

through a derived class.

SapTransfer The SapTransfer class implements functionality for managing a generic

transfer process—the action of transferring data from one source node to

a destination node. The following classes are considered to be transfer

nodes: SapAcquisition, SapAcqDevice, and SapBuffer.

SapView The SapView class includes the functionality to show the resources of a

SapBuffer object in a window through a SapDisplay object. An ‘auto

empty’ mechanism allows synchronization between SapView and

Sapera LT User's Manual Sapera LT Architecture • 11

SapTransfer objects in order to show buffers in realtime without missing

any data.

SapXferFrameRateInfo The SapXferFrameRateInfo class provides frame rate statistics for the

associated SapTransfer object. It is created automatically when a

SapTransfer object is constructed.

SapXferNode The SapXferNode class is the base class used to represent a source or

destination transfer node involved in a transfer task managed by the

SapTransfer class. The actual class for the node can be SapAcqDevice,

SapAcquisition, or SapBuffer.

SapXferPair The SapXferPair class describes a pair of source and destination nodes

for the SapTransfer class.

SapXferParams The SapXferParams class stores parameters needed by a transfer task

managed by the SapTransfer class.

C++ Only Class Description

SapAcqCallbackInfo The SapAcqCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapAcquisition class.

SapAcqDeviceCallbackInfo The SapAcqDeviceCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapAcqDevice class.

SapGioCallbackInfo The SapGioCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapGio class.

SapManCallbackInfo The SapManCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapManager class.

SapProCallbackInfo The SapProCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapProcessing class.

SapViewCallbackInfo The SapViewCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapView class.

SapXferCallbackInfo The SapXferCallbackInfo class acts as a container for storing all

arguments to callback functions for the SapTransfer class.

12 • Sapera LT Architecture Sapera LT User's Manual

.NET Only Class Description

SapAcqDeviceNotifyEventArgs The SapAcqDeviceNotifyEventArgs class stores arguments for

the AcqDeviceNotify event of the SapAcqDevice class.

SapAcqNotifyEventArgs The SapAcqNotifyEventArgs class stores arguments for the

AcqNotify event of the SapAcquisition class.

SapDisplayDoneEventArgs The SapDisplayDoneEventArgs class stores arguments for the

DisplayDone event of the SapView class.

SapErrorEventArgs The SapErrorEventArgs class stores arguments for the Error

event of the SapManager class.

SapException The SapException class is the base class common to the

SapLibraryException and SapNativePointerException classes.

SapGioNotifyEventArgs The SapGioNotifyEventArgs class stores arguments for the

GioNotify event of the SapGio class.

SapLibraryException The SapLibraryException class is thrown when error conditions

reported as exceptions occur in the Sapera LT libraries.

SapManVersionInfo The SapManVersionInfo class includes version information

corresponding to the currently installed copy of Sapera LT.

SapNativePointerException The SapNativePointerException class is thrown when internal

pointer error conditions occur.

SapProcessingDoneEventArgs The SapProcessingDoneEventArgs class stores arguments for

the ProcessingDone event of the SapProcessing class.

SapResetEventArgs The SapResetEventArgs class stores arguments for the Reset

event of the SapManager class.

SapServerFileNotifyEventArgs The SapServerFileNotifyEventArgs contains the arguments to

the application handler method for the ServerFileNotify event of

the SapManager class.

SapServerNotifyEventArgs The SapServerNotifyEventArgs class stores arguments for the

ServerNotify event of the SapManager class.

SapSignalNotifyEventArgs The SapSignalNotifyEventArgs class stores arguments for the

SignalNotify event of the SapAcquisition class.

SapXferCounterStampInfo The SapXferCounterStampInfo class stores information about

the counter-stamp capabilities for a specific transfer pair.

SapXferNotifyEventArgs The SapXferNotifyEventArgs class stores arguments for the

XferNotify event of the SapTransfer class.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 13

Trigger-to-Image-Reliability
Framework
Machine vision systems are used for inspection, recognition and guidance applications in different

types of manufacturing and process industries. The vision systems incorporate area and line scan,

color and monochrome cameras and frame grabbers to provide systems that operate autonomously

to perform inspection tasks on 100% of the objects. The vision systems must produce reliable

results under a variety of operating conditions to help improve quality of products and processes.

Teledyne DALSA’s cameras and frame grabbers incorporate the Trigger-to-Image Reliability (T2IR)

technology framework to ensure data reliability from the time an object is placed in front of camera

until a decision is made to accept or reject the inspected objects. The T2IR framework is rooted in

hardware and software design principles to ensure reliability and is delivered as hardware features

and capabilities, standalone GUI based tools, and programming API. The T2IR framework permits

applications to track, trace, debug, recover and prevent any data loss.

Teledyne DALSA Acquisition Device Functional
Architecture
Let us take brief look at the main building blocks of acquisition device architecture of Teledyne

DALSA hardware devices:

Acquisition Control Unit (ACQ): This conceptual functional block is responsible for control of

the image acquisition capabilities and features. It is responsible for ensuring that correct images

are generated and at the correct moment. The ACQ is responsible for managing camera control

signals under software control. In addition, the ACQ provides running status of the image

acquisition sequence.

Data Transfer Engine (DTE): The DTE is responsible for moving data in and out from onboard

memory to the host memory. The functional block consists of intelligent DMA architecture and

scales with performance specifications of the hardware. The DTE is also responsible for generating

all notifications necessary to manage image flow as per the T2IR framework.

Image Processing Unit (IPU): The IPU performs real-time embedded image processing. The

capabilities of IPU vary based on the price performance criteria targeted for the acquisition

hardware. The embedded processing varies in complexity from color space conversion in simple

frame grabbers and cameras to image analysis to controlling external devices on vision processors.

With the Teledyne DALSA image acquisition device functional architecture in mind, let us take a

closer look at T2IR framework to understand what is it, its principal building blocks and how it

helps reduce costs.

14 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

What is Trigger-to-Image Reliability (T2IR)?
The process of image acquisition for machine vision applications begins by sending a signal, known

as an external trigger, to the camera to start generating images. As such, no matter the nature of

vision system, a trigger signal represents a crucial starting point of the image acquisition sequence

to enable image processing and analysis for decisions further down the inspection process.

The reliability of a vision system is reflected by its ability to handle both predictable and

unpredictable trigger signals. The parts of vision system – image acquisition and control - must

operate in harmony to achieve this reliability. A controlled response to system events is directly

related to the quality of information needed to produce products with consistent quality. This helps

lower costs by increasing the system uptime and yield.

T2IR is a combination of hardware and software features that work together to improve the

reliability of your vision system. T2IR features deliver full system level monitoring, control, and

diagnostics capability. It lets you reach inside your vision system to audit and debug image flow.

You can trace the flow of data from image capture right through transfer to host memory. You can

even store images temporarily in the onboard memory to overcome unexpected transfer

bottlenecks. That means no lost data, no false data and a clear source to identify and track any

errors. Sapera T2IR features accomplish these tasks in a non-intrusive manner that does not

interfere with the applications.

T2IR ensures robust and reliable operations to produce repeatable results.

T2IR with a Typical Application
A typical imaging application follows a processing chain similar to the one illustrated below:

Teledyne

DALSA

Framegrabber

Host Computer

Acquistion

Trigger

Camera Processing
Application

Response

Image

Acquistiion

Image Transfer to

Frame Grabber

Image

Transfer to

Host

Image Analysis
Program Logic /

Result

Trigger

Output

Framer grabber or

camera output

trigger to other

device.

Trigger

Input
Memory

T2IR aims to handle the common breakdown points in this chain such that corrective or

preventative action can be taken and to eliminate the possibility of unknown faults/application

failure.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 15

Trigger too fast/slow

Too many triggers

Missing trigger

Transfer Fail:

Frame Lost

Data Overflow

Buffer full

Image not

processed

Invalid output

trigger

Timeout

reached

Teledyne

DALSA

Framegrabber

Host Computer

Acquistion

Trigger

Camera Processing
Application

Response

Image

Acquistiion

Image Transfer to

Frame Grabber

Image

Transfer to

Host

Image Analysis
Program Logic /

Result

Trigger

Output

Framer grabber or

camera output

trigger to other

device.

Trigger

Input
Memory

Eements of Trigger-to-Image Reliability Framework
T2IR framework capabilities are available in three principal ways:

• Sapera API programming functions: integrated in user applications for dynamic inline

tracking, tracing and control.

• Standalone GUI based tools: enable advanced diagnostics that can run concurrently with

Sapera applications without performance impact.

• Visual indicators – provide indispensable internal device status details from the time the

system powers up to operating mode.

The functionality of the T2IR GUI tools is also available as part of the Sapera API. Users can access

this functionality directly from their own application using the Sapera SDK. As part of T2IR all

Teledyne DALSA hardware incorporates LEDs to indicate the device operating status . These visual

indicators are indispensable before any host application can run or when camera and host are

located some distance apart.

16 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

The following table summarizes the key benefits offered by various functional elements of T2IR

framework:

T2IR Elements Benefit

The right target image

acquisition

Acquire the best quality images with object details

critical to make correct decisions.

Managing External Triggers Ensures synchronization between image acquisition and

object motion. Reduced image artifacts due to motion

and provide control response to expected and

unexpected external events.

Tracking and Tracing Images Continuous coverage of the entire images flow reduces

waste and improves up time.

Monitoring the Acquisition

and Transfer Process

Enables preventive action if resource usage exceeds a

predetermined threshold, selectively keeping or

discarding images to sustain processing speed.

Overcoming Too Much Data Handle peak loads to avoid data loss, ensure smooth

operations.

Ensuring Data Quality Helps increase uptime and reduce waste .

Advanced Diagnostics Rapid pinpointing of errors for speedy diagnostic and

preventive actions.

The Right Target Image Acquisition
Sapera LT supports programmable delay timers on strobe and trigger signals to precisely control

the image acquisition timing to acquire the right target image.

Teledyne DALSA camera and frame grabber products incorporate various levels of control functions

for automating imaging applications. A good starting example is the integration of the trigger and

strobe control functions into onboard hardware.

This sounds simple enough: a trigger input generates a strobe output for lighting control and

camera exposure. However, there are circumstances in which a delay between the trigger input

and the strobe output is required; for example, if the camera and lighting units are not in the same

position on a conveyor as the trigger sensor. Coordinating these two events through software is

almost impossible and certainly not reliable (especially given the variations in command execution

of the Windows operating system). To solve this problem Teledyne DALSA has incorporated

programmable delay timers between these two signals.

The delay timers give developers a mechanism for establishing a precise delay between the trigger

input and firing of the lighting and camera exposure. However, this amount of programmed delay

is calculated based on the theoretical speed of the production line. If the actual speed is not

constant (a common occurrence), the position of the object in the resulting image may not be

suitable for analysis. Therefore, for reliable image acquisition the delay has to be linked to the

speed of the object. This is done using the pulse output from an encoder attached to a rotating

part of the conveyor system. Expressing the delay in terms of encoder ticks synchronizes it with

the actual speed of the production line. As a result, the object is always at the same location in the

image regardless of the speed of production line.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 17

The easiest way to program trigger parameters is to use Sapera CamExpert. Sapera CamExpert is

camera configuration tool that offers intuitive graphical user interface and live image display for

faster camera setup. CamExpert works with all Teledyne DALSA frame grabbers, GigE Vision and

GenCP compliant cameras.

For example, the External Trigger parameters are all grouped in one category in the Parameters

panel (shown here for the Xtium-CL PX4 frame grabber):

When you are satisfied with all the parameters settings these parameters can be saved in a

configuration file and later retrieved by the application at run time.

The example below shows how to access previously stored camera configuration file for the Xtium

frame grabber in C++:

// Allocate acquisition object

SapAcquisition *pAcq = new SapAcquisition(SapLocation (“Xtium-CL_PX_1”, 0),

“MyCamera.ccf”);

This synchronization achieves the first goal of Trigger-to-Image Reliability: the camera is properly

controlled to capture the image of the target being inspected. Of course, these hardware features

are under software control, but, once initialized, they act independently of any software execution,

leading to predictable results.

System designers want to build systems that offer scalable performance while minimizing costs. In

some cases it might more economical to combine multiple lower resolution cameras and optics to

construct higher resolution images while in some other it might be necessary to distribute very

high speed images across multiple computers to minimize image processing and analysis.

In all cases when multiple acquisition devices are used, it is important that all devices operate

synchronously to produce images that are error free and ready to use. T2IR framework capabilities

permit this by incorporating critical features to achieve image acquisition synchronization in

hardware and software, without the need for external synchronization and data replicating

devices., This T2IR synchronization feature also permits implementation of different image

processing setups to achieve a target processing time. Let us closely look at some of the commonly

used system configurations.

18 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

For example, one application can combine images from two cameras in one buffer or split the

image from one camera across multiple frame grabbers to overcome processing bandwidth

limitations.

In cases where images from different devices must be combined in one buffer, Teledyne DALSA

GigE Vision cameras, (such as Genie Nano and Linea GigE) and frame grabbers (such as Xtium-CL

MX4) incorporate the necessary hardware to work under Sapera LT to capture images in one

seamless Sapera buffer. Teledyne DALSA’s Xcelera and Xtium series frame grabbers, for example,

offer dedicated hardware signals to synchronize multiple boards and cameras together. The trigger

source can be easily set using CamExpert. Sapera LT SDK also provides dedicated demo

applications with source code to jump start the development efforts.

Similarly, Genie Nano and Linea GigE cameras series are also capable of accepting external input

signals that can be distributed to other cameras for synchronization.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 19

The Xtium-CLHS series also includes a dedicated image data forwarding port. This allows image

processing to be distributed across multiple computers or capture images in the same PC using two

frame grabbers when camera bandwidth exceeds the 2.1GB/s limit of the CLHS cable.

Managing External Triggers
Detecting Valid and Invalid Triggers

External trigger management involves functions and capabilities that are essential to ensure

reliability of the trigger signals seen by the vision system. It involves managing situations when the

system receives too many triggers for it to properly handle situations when the signal does not

truly represent a trigger event. Let us see how T2IR handles both predictable and unpredictable

triggers to ensure reliability of a vision system.

A first criterion for a valid trigger is that a trigger has to represent an actual “part-in place” for

inspection. A false trigger is a signal that is not associated with a part in place. False triggers can

be caused by jitter resulting from electrical noise or glitches associated with mechanical actuators

and motors. T2IR capabilities offer an effective way to reduce faulty triggers by ensuring that the

signal remains active for a minimum duration before it can be considered as valid for the

acquisition. For added flexibility Teledyne DALSA products offer this T2IR feature as a user

programmable parameter.

20 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

The following figure illustrates a typical imaging application.

Sensor detects

object and sends

signal to camera

Strobe

light

Camera triggers strobe

and acquires image

Application analyzes

image and triggers

response (i.e. pass/fail)

Rejector

PLC

The following figure illustrates valid and invalid triggers.

Normal input

trigger frequency

Erratic input

trigger frequency

Valid triggers
Valid triggers

Invalid triggers

Sapera

generates

event

Application

response

After the probability of spurious triggers is minimized, user applications can be programmed to

handle the other extreme, appropriately called “over trigger” conditions. An over-trigger condition

occurs when the camera receives a trigger but is busy acquiring previous image. Care must be

given to the fact that ,in some cases, sending a trigger while grabbing the previous line or frame is

desirable to minimize the dead time between frames or lines(in case of line scan cameras).

Typical causes for an over-trigger state can be that the image generated from the previous trigger

is still being processed, or the sensor is currently being readout or exposed for the next image

(note that some cameras support exposing the sensor during readout, which allows for a higher

frame rate than otherwise possible).

The T2IR capabilities allow applications to tolerate over-trigger situations and track them if a

system starts to lose images. When frames are lost, T2IR capabilities notify Sapera based user

applications with event messages for remedial actions. T2IR framework helps applications to

maintain control despite timing fluctuations in trigger generation.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 21

Tracking and Tracing Images
While we have progressed in our discussion from the point of detecting our targets, to triggering

strobe lights and camera acquisition when the target is in the right location and reading the correct

image data from the sensor, this is only the start of designing a reliable machine vision system.

Another major issue is coordinating the collection of image data and correlating these images with

physical objects moving through a material-handling system.

Trigger-to-Image Reliability uses an important design concept to assist engineers in creating

reliable and repeatable systems: image tagging or timestamps. To illustrate, let us use an

example of a material-handling unit processing up to 3,600 parts per minute (ppm). For factory

production lines to work at maximum speed and each image must be tagged such that the

downstream decision to keep, discard or re-inspect is carried out on the correct object.

More advanced applications may require inspection from multiple views. Continuing our previous

example, let us assume the object has to be inspected on each side, each with different lighting, at

the same frame rate. Now the constraints evolve from inspecting 3600 parts per minute to

handling 14,400 images per minute. In this scenario, the imaging system must correlate four

different acquisitions before making the final decision to accept, reject or re-inspect the object.

With synchronized acquisition timestamps, the 4 images for each item are:

Image 1 timestamp =

Image 2 timestamp =

Image 3 timestamp =

Image 4 timestamp =

+ x ticks =

+ y ticks =

+ z ticks =

Where x, y and z are the expected intervals between acquisitions.

Figure 4: Object Tracing

22 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

The image tags (timestamps) are generated either from an onboard hardware clock, the PC clock

or increments using an external signal, be it a trigger, encoder tick or another pulse input at the

time of image acquisition and/or image transfer to the host. For example, the Xtium-CL MX4

provides the following hardware timestamps:

The acquisition frame start timestamps from the device and host (issued when it starts to receive

the frame) are saved in Sapera buffers with the images. These timestamps can be retrieved by the

host applications using Sapera functions for analysis.

Since there is a time lag between image capture and analysis, the image timestamps can be used

to ensure that the system acts on the correct object. Timestamps can also be used to precisely

measure the acquisition or processing rates. It can also be used to determine if any loss of data

has occurred by comparing the time lapse between successive frames.

In C++, callback functions are used to access the timestamps; whenever registered events occur,

the associated callback function is executed.

//Register acquisition events

success = pAcqDevice->RegisterCallback("FrameStart", MyAcquisitionCallback, pBuffer)

…

//Callback function for events

void MyAcquisitionCallback(SapAcqDeviceCallbackInfo *pInfo)

{

…

pInfo->GetAuxiliaryTimeStamp(&myAuxTimestampValue);

pInfo->GetHostTimeStamp(&myHostTimestampValue);

…

}

For .NET, a similar mechanism uses the EnableEvent method and AcqDeviceNotify event to call the

associated event handler.

//Enable acquisition event

 device.EnableEvent("FrameStart");

…

//Create event handler to execute callback for enabled events

device.AcqDeviceNotify += new SapAcqDeviceNotifyHandler(AcqDeviceCallback);

…

//Callback function for events

static void AcqDeviceCallback(Object sender, SapAcqDeviceNotifyEventArgs args)

{

myVariableA = args.AuxTimeStamp);

myVariableB = args.HostTimeStamp;

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 23

Monitoring the Acquisition Process
When the machine vision system is capturing the right data and tracking objects throughout the

cycle for acceptance or rejection, it is now time to transfer the image data from the onboard

memory to system memory.

Trigger-to-Image Reliability framework includes a set of software tools to ensure that all required

images were captured accurately into onboard memory. While it is possible to continuously check

the status to monitor system operations, in practice it comes at the expense of system

performance. T2IR uses the concept of events that are issued by the acquisition devices to notify

the application if certain status flags have changed. This allows applications to operate more

optimally as it gets interrupted from its main processing task only when an event has occurred.

Since, these notifications are handled at the user application level, the applications have complete

freedom to decide how best to handle them.

The table below summarizes the Sapera events associated with image capture and transfer

sequences into the host memory.

Sapera Events

Event Description

EndOfEven End of even field

EndOfField End of field (odd or even)

EndOfFrame End of frame

EndOfLine After a specific line number eventType = EndOfLine | lineNum

EndOfNLines After a specific line number (linescan cameras only) eventType = EndOfNLines | numLines

EndOfOdd End of odd field

EndOfTransfer
End of transfer, that is, after all frames have been transferred following calls to SapTransfer.Snap or
SapTransfer.Grab/SapTransfer.Freeze.

FieldUnderrun The number of active lines per field received from a video source is less than it should be.

LineUnderrun The number of active pixels per line received from a video source is less than it should be.

StartOfEven Start of even field

StartOfField Start of field (odd or even)

StartOfFrame Start of frame

StartOfOdd Start of odd field

24 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

In addition to these events the status of the following acquisition signals can be monitored in the

host application. Note that the availability of status signals varies with the hardware used and this

availability can be verified programmatically. The SapAcquisition::GetSignalStatus(…..) function

can be used to monitor these signals.

Status signal to inquire. Description

SapAcquisition::SignalNone No signal

SapAcquisition::SignalHSyncPresent Horizontal sync signal (analog video source) or line valid (digital video source)

SapAcquisition::SignalVSyncPresent Vertical sync signal (analog video source) or frame valid (digital video source)

SapAcquisition::SignalPixelClkPresent / Pixel clock signal. For CameraLink devices, this status returns true if a clock
signal is detected on the base cable.

SapAcquisition::SignalPixelClk1Present

SapAcquisition::SignalPixelClk2Present Pixel clock signal. For CameraLink devices, this status returns true if a clock
signal is detected on the medium cable.

SapAcquisition::SignalPixelClk3Present Pixel clock signal. For CameraLink devices, this status returns true if a clock
signal is detected on the full cable.

SapAcquisition::SignalPixelClkAllPresent Pixel clock signal. For Camera Link devices, true if all required pixel clock signals
have been detected by the acquisition device based on the CameraLink
configuration selected.

SapAcquisition::SignalChromaPresent Color burst signal (valid for NTSC and PAL)

SapAcquisition::SignalHSyncLock Successful lock to an horizontal sync signal, for an analog video source

SapAcquisition::SignalVSyncLock Successful lock to a vertical sync signal, for an analog video source

SapAcquisition::SignalPowerPresent Power is available for a camera. This does not necessarily mean that power is
used by the camera, it only indicates that power is available at the camera
connector, where it might be supplied from the board PCI bus or from the board
PC power connector. The returned value value is FALSE if the circuit fuse is
blown, therefore power cannot be supplied to any connected camera.

SapAcquisition::SignalPoCLActive Power to the camera is present on the Camera Link cable

SapAcquisition::SignalPixelLinkLock Lane lock signal. For HSLink and CLHS devices, true if all required lane lock
signals have been detected by the acquisition device based on the HSLink or
CLHS configuration selected.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 25

Overcoming Too Much Data
Tracks Occurrences of Trashed Frames

Let us build on our previous example: the system processing 3600 parts per minute that involves

image acquisition from 4 sides simultaneously results in a machine vision system acquiring,

processing and analyzing 14,400 images per minute. Proper system design dictates that a certain

amount of over-capacity be built into the system to handle peak loads. Trigger-to-Image Reliability

framework delivers peak load capacity through the concept of circular buffers. It also combines this

with user notifications for continuous tracking. While handling peak-load, it is important to monitor

the image queue to ensure that various parts of the system stay in-sync and if any variation occurs

it is identified and promptly communicated to the user application.

The scalable nature of T2IR framework has allowed Teledyne DALSA to add sophisticated

parameter switching capability in its hardware products that are well suited for use with circular

buffers. Teledyne DALSA Genie cameras, for example, allow users to change trigger delay, strobe

outputs, exposure delay and duration, gain, LUTs and FFC (flat field coefficients) on a frame by

frame basis. Similarly, the Xtium-CL MX4 frame grabber allows users to switch flat-field and LUTs

on a frame by frame basis. When activated, these advanced switching features operate entirely in

the acquisition device without using the host CPU resources. Furthermore, the images generated

while switching parameters can be saved as a sequence of images.

T2IR provides a broad range of options to handle situations involving too much data. It provides

users with necessary information to discard images safely while preserving the accuracy of results

from images that were processed. When every image counts discarding images inevitably leads to

reduced throughput. Thus, even when discarding images care must be given to minimize the

impact on throughput. The T2IR framework allows applications to discard images early in the

acquisition pipeline if it is determined that the system won’t be able to handle the images

subsequently. The T2IR framework uses a concept of “trash” buffers to discard incoming images

efficiently. When a system is not able to handle the incoming data, the acquired images are

transferred into the “trash buffer”.

26 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

When this occurs, the user application is notified through a data-overflow event. The Xtium family

of frame grabbers when transferring images to the host buffers, for example, monitors downstream

bottlenecks and immediately discards images at the acquisition source instead of transferring all

the way in the host memory and then discarding it. This allows the acquisition section to return to

a ready state immediately to capture next image.

Ensuring Data Quality

Generally machine vision cameras are responsible for handling over-trigger situations elegantly and

in a predictable fashion. The over-trigger situation for a camera occurs when the rate of triggers for

a camera exceeds its maximum frame rate or line rate capability. In cases where the camera does

not respond properly and stops sending images at all, T2IR function provide means to recover from

this situation and generates notifications to the user application. This is a standard functionality on

all Teledyne DALSA frame grabbers. Trapping and handling lost lines or frames is an important

factor to determine the reliability of the acquisition system and has a direct impact on the accuracy

of results. For example, for a line scan camera, a missing line alters the aspect ratio of the object

in the image, causing the processing algorithm to produce incorrect results. For area-scan

cameras, similarly, it could imply missing objects.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 27

Advanced Diagnostics
Sapera LT’s T2IR framework includes powerful GUI based tools for continuous monitoring and rapid

pinpoint of errors that are hard to trace back. This continuous system monitoring and deep

debugging tools help reduce downtime. This is done with the help of the following tools:

• Sapera Monitor

• External LEDs

• Sapera LogViewer

• Sapera PCI Diagnostic Tool

• Sapera Networking Tool

• Sapera Configuration

• Xtium Diagnostic Tool

Sapera Monitor
The Sapera Monitor Tool allows users to view the acquisition and transfer events generated by an

acquisition device in real-time. Sapera Monitor is a standalone application that is based on the

Sapera LT T2IR functions. It allows users to see how their application is reacting to various events

pertaining to the acquisition system and helps identify and debug problems without having to

modify their application.

28 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

External LEDs
Visual indicators are indispensable features that permit continuous system monitoring right from

the power up to full operations. External LEDs are available on the frame grabber bracket and

camera back panel. Xtium series frame grabbers, for example, indicate crucial information during

boot-up to indicate the board’s detection status, PCIe version, lane configuration, and, during

operation, presence of camera and acquisition status. For cameras, the status LED indicates boot-

up and connection information. For example, the following LED sequence occurs when the Genie is

powered up connected to a network with installed Genie Framework software.

Flashing Red

initialization
Flashing Blue

waiting for IP
Blue

IP assigned Green

application

connected

Red

power connected

Sapera LogViewer
The Teledyne DALSA Sapera Log Viewer utility bundled with Sapera LT installations provides an

easy way to view the Sapera messages sent to the Teledyne DALSA acquisition devices and

operating system. The Log Viewer provides critical insight into interactions between the host

application and Sapera modules. Its detailed message listing offers crucial system wide information

thus making it an indispensable tool to pinpoint hard to isolate, infrequent errors.

Sapera LogViewer runs transparently in the background without impacting the application

performance and stores entire message communications and results. This allows analysis of the log

even after the error has occurred. LogViewer configuration options allow users to set the type of

results that are logged. For example, users can choose only to log “Error” messages and ignore

“Warnings” or “Info” messages to conserve space. The resulting logs can be dynamically filtered

and/or searched for key terms to pinpoint the messages resulting in errors, for example.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 29

Furthermore, it is possible to run and customize multiple instances of the Log Viewer at the same

time; therefore users, when dealing with multiple Teledyne DALSA acquisition devices, only view

the messages of interest in each instance.

Sapera GigE Vision Device Status

The GigE Vision Device Status application provides a quick method to view all the Teledyne DALSA

GigE devices on your system.

It is available directly from the taskbar.

30 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

It continuously monitors the system and when a device is added or removed, a message box is

displayed:

Sapera PCI Diagnostic Tool
The PCI Diagnostic tool allows you to view the low-level hardware resources allocated to the PCI

devices on the system. For frame grabbers, you can quickly verify the device capabilities such as

the bus and slot utilized, device ID, link speed (for example, Gen 1 or Gen 2) and payload size.

Sapera LT User's Manual Trigger-to-Image-Reliability Framework • 31

Xtium Frame Grabber Diagnostic Tool
The Xtium Board Diagnostic Tool provides a quick method to see board status and health of Xtium

family of frame grabbers. Additionally, it provides live monitoring of FPGA temperature and

voltages, which may help in identifying problems.

Diagnostic Tool Main Window

The main window provides a comprehensive view of the installed Xtium board. Toolbar buttons

execute the board self-test function and open a FPGA live status window.

Important parameters include the PCI Express bus transfer supported by the host computer and

the internal Xtium FPGA temperature. The bus transfer defines the maximum data rate possible in

the computer, while an excessive FPGA temperature may explain erratic acquisitions due to poor

computer ventilation.

32 • Trigger-to-Image-Reliability Framework Sapera LT User's Manual

Camera Input Eye Diagram Monitor

An Eye diagram is a graphical representation of signal between camera and frame grabber data

lanes. This tool can be used to determine if the cable performance starts to degrade over a long

period of use. The screen capture below shows a camera with 7 data lanes, where each digital

signal is repetitively sampled and overlaid over itself, showing relative low-high transitions of the

differential signal. Interpreting the results is easy, the bigger the blue area (eye surface) the better

the signal integrity. When all the blue areas are similar in size and shape, it indicates that each

wire pair has similar performance.

The closure (collapse or horizontal shortening) of the eye surface would indicate problems such as

poor signal to noise, high cable capacitance, multipath interference, among many possible digital

transmission faults.

Sapera LT User's Manual Sapera LT API Overview • 33

Sapera LT API Overview

The Three Sapera LT APIs
Three different APIs are available under Sapera LT:

• Sapera LT ++ classes (based on C++ language)

• Sapera LT .NET classes (based on .NET languages)

• Sapera LT Standard API (based on C language)

The following sections demonstrate Sapera LT ++ and Sapera LT .NET. For C API information

consult the Sapera Basic Modules Reference Manual.

Sapera LT ++ – Creating an Application
See the Using Sapera LT ++ chapter of the Sapera LT ++ Programmer’s Manual for a

description of the steps needed for creating a Sapera LT ++ application.

Sapera LT .NET – Creating an Application
See the Using Sapera LT .NET chapter of the Sapera LT .NET Programmer’s Manual for a

description of the steps needed for creating a Sapera LT .NET application.

Sapera LT ++ – Object Initialization and Cleanup
Sapera LT ++ objects that encapsulate management of Standard API resources are initialized and

refreshed in a uniform way, which consists of the following steps:

• Allocate memory for the object

• Create the resources needed by the object through the Create method

• Destroy the resources for the object through the Destroy method

• Release the memory for the object

Example with SapBuffer Class Objects

There is more than one way to do this, as shown next for SapBuffer class objects:

// The usual way to create the object is through a pointer

SapBuffer *pBuffer = new SapBuffer(1, 512, 512);

if (pBuffer->Create())

{

 // Buffer object is correctly initialized

}

// Destroy the buffer resources after checking if it is still initialized

// through the ‘operator BOOL’ for the SapBuffer class

if (*pBuffer)

{

 pBuffer->Destroy();

}

// Release the object memory

delete pBuffer;

pBuffer = NULL;

34 • Sapera LT API Overview Sapera LT User's Manual

// Create the object on the stack

SapBuffer buffer(1, 512, 512);

if (buffer.Create())

{

 // Buffer object is correctly initialized

 // Destroy the buffer resources

 buffer.Destroy();

}

// The object memory is automatically released when it goes out of scope

// Create the object from an existing object

SapBuffer buffer(1, 512, 512);

SapBuffer *pBuffer = new SapBuffer(buffer);

if (pBuffer->Create())

{

 pBuffer->Destroy();

}

// Release the object memory

delete pBuffer;

pBuffer = NULL;

Sapera LT ++ objects that do not encapsulate management of Standard API resources are

correctly initialized as soon as their constructor has been called.

SapDataMono data(123);

// The object memory is automatically released when it goes out of scope

Sapera LT .NET – Object Initialization and Cleanup
Sapera LT .NET objects are initialized and cleaned up in a uniform way, which is described by the

following steps:

• Allocate memory for the object

• Create the resources needed by the object through the Create method

• Destroy the resources for the object through the Destroy method

• Release unmanaged memory used internally throught the Dispose method

Example with SapBuffer Class Objects in C#:

SapBuffer buffer = new SapBuffer(1, 512, 512, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

if (buffer.Create())

{

 // Buffer object is correctly initialized

}

// Destroy the buffer resources after checking if it is still initialized

if (buffer.Initialized)

{

 buffer.Destroy();

}

// Release unmanaged memory used internally

buffer.Dispose();

Sapera LT User's Manual Sapera LT API Overview • 35

Equivalent Code for Visual Basic .NET:

Dim buffer As SapBuffer = New SapBuffer(1, 512, 512, SapFormat.Mono8, _

 SapBuffer.MemoryType.ScatterGather)

If buffer.Create() Then

 ' Buffer object is correctly initialized

End If

' Destroy the buffer resources after checking if it is still initialized

If buffer.Initialized Then

 buffer.Destroy()

End If

' Release unmanaged memory used internally

buffer.Dispose()

Equivalent Code for C++:

SapBuffer^ pBuffer = gcnew SapBuffer(1, 512, 512, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

if (pBuffer->Create())

{

 // Buffer object is correctly initialized

}

// Destroy the buffer resources after checking if it is still initialized

if (pBuffer->Initialized)

{

 pBuffer->Destroy();

}

// Release unmanaged memory used internally

// Note that the delete operator actually calls the Dispose method

delete pBuffer;

pBuffer = nullptr;

36 • Sapera LT API Overview Sapera LT User's Manual

Sapera LT ++ – Error Management
Most Sapera LT ++ methods return a Boolean TRUE/FALSE result to indicate success or failure.

However, the actual errors conditions are still reported as soon as they happen using one of five

predefined reporting modes:

• Error messages are sent to a popup window (the default)

• Error messages are sent to the Sapera Log Server (can be displayed using the Sapera Log

Viewer)

• Error messages are sent to the active debugger if any

• Error messages are generated internally

• Error messages are sent to the application through a callback function

Setting the Current Reporting Mode

Use the SapManager::SetDisplayStatusMode method to set the current reporting mode, as follows:

// Send error messages to the Sapera Log Server

SapManager::SetDisplayStatusMode(SapManager::StatusLog);

// Send error messages to the debugger

SapManager::SetDisplayStatusMode(SapManager::StatusDebug);

// Simply generate error messages

SapManager::SetDisplayStatusMode(SapManager::StatusCustom);

// Send errors to application using a callback function

SapManager::SetDisplayStatusMode(SapManager::StatusCallback);

// Restore default reporting mode

SapManager::SetDisplayStatusMode(SapManager::StatusNotify);

Monitoring Errors

No matter which reporting mode is currently active, it is always possible to retrieve the latest error

message. If the error happened when Sapera LT ++ called a Standard API function, then a related

numeric code is also available. In order the retrieve this information, call the

SapManager::GetLastStatus method as follows:

// Get the latest error message

char errorDescr[256];

strcpy(errorDescr, SapManager::GetLastStatus());

// Get the latest error code

// See the Sapera Basic Modules Reference Manual for details

SAPSTATUS lastError;

SapManager::GetLastStatus(&lastError);

In addition, the Sapera Log Viewer utility program, included with Sapera LT, provides an easy way

to view error messages. It includes a list box that stores these messages as soon as the errors

happen. Available options allow you to modify the different fields for display.

During development it is recommended to start the Log Viewer before your application and then let

it run so it can be referred to any time a detailed error description is required. However, errors are

actually stored by the Sapera Log Server (running in the background), even if the utility is not

running. Therefore it is possible to start the Log Viewer only when a problem occurs with your

application.

Sapera LT User's Manual Sapera LT API Overview • 37

Sapera LT .NET – Error Management
Most Sapera LT .NET methods return a boolean result to indicate success or failure. However, the

actual errors conditions are still reported as soon as they happen using one of five predefined

reporting modes:

• Error messages are sent to a popup window (the default)

• Error messages are sent to the Sapera Log Server (can be displayed using the Sapera Log

Viewer)

• Error messages are sent to the application through an event

• Error messages are sent to the application through an exception

• Error messages are generated internally, but not reported immediately

Setting the Current Reporting Mode

Use the DisplayStatusMode property of the SapManager class to set the current reporting mode as

follows:

Example of Error Management with C#:

// Send error messages to the Sapera Log Server

SapManager.DisplayStatusMode = SapManager.StatusMode.Log;

// Send errors to application through the Error event

SapManager.DisplayStatusMode = SapManager.StatusMode.Event;

SapManager.Error += new SapErrorHandler(SapManager_Error);

SapManager.Error -= new SapErrorHandler(SapManager_Error);

// Send errors to application through an exception

SapManager.DisplayStatusMode = SapManager.StatusMode.Exception;

// try

{

 // Code that possibly generates an error

}

catch (SapLibraryException exception)

{

 // Exception handling code

}

// Just generate error messages

SapManager.DisplayStatusMode = SapManager.StatusMode.Custom;

// Restore default reporting mode

SapManager.DisplayStatusMode = SapManager.StatusMode.Popup;

38 • Sapera LT API Overview Sapera LT User's Manual

Equivalent Code for Visual Basic .NET:

' Send error messages to the Log Viewer

SapManager.DisplayStatusMode = SapManager.StatusMode.Log

' Send errors to application through the Error event

SapManager.DisplayStatusMode = SapManager.StatusMode.Event

AddHandler SapManager.Error, AddressOf SapManager_Error

RemoveHandler SapManager.Error, AddressOf SapManager_Error

' Send errors to application through an exception

SapManager.DisplayStatusMode = SapManager.StatusMode.Exception

Try

 ' Code that possibly generates an error

Catch exception As SapLibraryException

 ' Exception handling code

End Try

' Just generate error messages

SapManager.DisplayStatusMode = SapManager.StatusMode.Custom

' Restore default reporting mode

SapManager.DisplayStatusMode = SapManager.StatusMode.Popup

Equivalent Code for C++:

// Send error messages to the Log Viewer

SapManager::DisplayStatusMode = SapManager::StatusMode::Log;

// Send errors to application through the Error event

SapManager::DisplayStatusMode = SapManager::StatusMode::Event;

SapManager::Error += gcnew SapErrorHandler(SapManager_Error);

SapManager::Error -= gcnew SapErrorHandler(SapManager_Error);

// Send errors to application through an exception

SapManager::DisplayStatusMode = SapManager::StatusMode::Exception;

// try

{

 // Code that possibly generates an error

}

catch (SapLibraryException^ exception)

{

 // Exception handling code

}

// Just generate error messages

SapManager::DisplayStatusMode = SapManager::StatusMode::Custom;

// Restore default reporting mode

SapManager::DisplayStatusMode = SapManager::StatusMode::Popup;

Event Handling Method Definition for C#:

public static void SapManager_Error(Object sender, SapErrorEventArgs args)

{

 // Code to handle the Error event of the SapManager class

}

Equivalent Code for Visual Basic .NET:

Sub SapManager_Error(ByVal sender As Object, ByVal args As SapErrorEventArgs)

 ' Code to handle the Error event of the SapManager class

End Sub

Sapera LT User's Manual Sapera LT API Overview • 39

Equivalent Code for C++:

static void SapManager_Error(Object^ sender, SapErrorEventArgs^ args)

{

 // Code to handle the Error event of the SapManager class

}

Monitoring Errors

No matter which reporting mode is currently active, it is always possible to retrieve the latest error

message. If the error happened when Sapera LT .NET called a Standard API function, then a

related numeric code is also available. In order the retrieve this information use the

LastStatusMessage and LastStatusCode properties of the SapManager class.

Example to Monitor Errors in C#:

// Get the latest error message

string lastMessage = SapManager.LastStatusMessage;

// Get the latest error code

// See the Sapera Basic Modules Reference Manual for details

SapStatus lastCode = SapManager.LastStatusCode;

Equivalent Code for Visual Basic .NET:

' Get the latest error message

Dim lastMessage As String = SapManager.LastStatusMessage

' Get the latest error code

' See the Sapera Basic Modules Reference Manual for details

Dim lastCode As SapStatus = SapManager.LastStatusCode

Equivalent Code for C++:

// Get the latest error message

String^ lastMessage = SapManager::LastStatusMessage;

// Get the latest error code

// See the Sapera Basic Modules Reference Manual for details

SapStatus lastCode = SapManager::LastStatusCode;

In addition, the Sapera Log Viewer utility program included with Sapera LT provides an easy way to

view error messages. It includes a list box that stores these messages as soon as the errors

happen. Available options allow you to modify the different fields for display.

During development it is recommended to start the Log Viewer before your application and then let

it run so it can be referred to any time a detailed error description is required. However, errors are

actually stored by the Sapera Log Server (running in the background), even if the utility is not

running. Therefore it is possible to start the Log Viewer only when a problem occurs with your

application.

40 • Sapera LT API Overview Sapera LT User's Manual

Capabilities and Parameters
Sapera LT ++ and Sapera LT .NET already include all the functionality necessary for most Sapera

LT applications. However, some features are only available in the Standard API such as the

devices's capabilities and parameters. Together these API define a resource device's ability and

current state.

See the Sapera Basic Modules Reference Manual for a description of all capabilities and parameters,

and their possible values.

What is a Capability?

A capability as its name implies, is a value or set of values that describe what a resource can do.

Capabilities are used to determine the possible valid values that can be applied to a resource's

parameters. They are read-only.

A capability can be obtained from a resource by using the GetCapability method in the

corresponding class. See the Sapera LT ++ Programmer’s Manual or the Sapera LT .NET

Programmer’s Manual for details.

What is a Parameter?

A parameter describes a current characteristic of a resource. It can be read/write or read-only.

A parameter for a resource can be obtained or set by using the GetParameter and SetParameter

methods in the corresponding class. See the Sapera LT ++ Programmer’s Manual or the Sapera LT

.NET Programmer’s Manual for details.

Sapera LT User's Manual Acquiring Images • 41

Acquiring Images
Required Classes
You need three Sapera LT ++ or Sapera LT .NET classes to initiate the acquisition process:

• SapAcquisition or SapAcqDevice: Use the SapAcquisition class if you are using a frame

grabber. Use the SapAcqDevice class if you are using a camera directly connected to your

PC, such as a Teledyne DALSA Genie camera.

• SapBuffer: Used to store the acquired data. Should be created using the ScatterGather

(preferable) or Contiguous buffer type to enable the transfer. See the "Working with

Buffers" section for for more information about contiguous memory and scatter-gather.

• SapTransfer: Used to link the acquisition device to the buffer and to synchronize the

acquisition operations.

Frame-Grabber Acquisition – Required Steps
• Specify the acquisition device and corresponding camera configuration file using the

SapAcquisition class.

• Create a buffer in memory to store the acquired image using the SapBuffer class.

• Allocate a view object to display the image using the SapView class, if required.

• For Sapera LT ++: Allocate a transfer object to link the acquisition to the image buffer

using the SapTransfer class. A transfer callback function should be registered if images need

to be processed and displayed while grabbing.

• For Sapera LT .NET: Allocate a transfer object to link the acquisition to the image buffer

using the SapTransfer class. Use a transfer event method if images need to be processed

and/or displayed while grabbing.

• Allocate the resources for all objects (acquisition, view, buffer, and transfer), using the

respective Create function of the class used to create the objects.

• Grab images, using the SapTransfer class.

• Destroy all created resources when grabbing is completed.

Sapera LT ++ – Sample Acquisition Code
This sample code demonstrates how to grab a live image into a buffer allocated in system memory

using the X64-CL board as an acquisition device. See section Supported Systems & Devices of the

Sapera LT User’s Introduction manual for a list of Teledyne DALSA boards equipped with an

acquisition section.

Acquiring an image requires one file (the CCF file) to configure the acquisition hardware. It defines

both the characteristics of the camera and how it will be used with the acquisition hardware. Refer

to Using the CamExpert Tool in the Sapera LT User’s Introduction manual for information on

generating this file. Resource parameters can also be accessed individually.

After the acquisition module is initialized using the CCF file, a compatible buffer can be created

using settings taken directly from the acquisition.

Before starting the actual transfer, you must create a transfer object to link the acquisition and the

buffer objects. Furthermore when stopping a transfer, you must call the SapTransfer::Wait method

to wait for the transfer process to terminate.

42 • Acquiring Images Sapera LT User's Manual

Example Program using Sapera LT ++

// Transfer callback function is called each time a complete frame is transferred.

// The function below is a user defined callback function.

void XferCallback(SapXferCallbackInfo *pInfo)

{

 // Display the last transferred frame

 SapView *pView = (SapView *) pInfo->GetContext();

 pView->Show();

}

// Example program

//

main()

{

 // Allocate acquisition object

 SapAcquisition *pAcq =

 new SapAcquisition(SapLocation (“X64-CL_1”, 0), “MyCamera.ccf”);

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer *pBuffer = new SapBuffer(1, pAcq);

 // Allocate view object, images will be displayed directly on the desktop

 SapView *pView = new SapView(pBuffer, SapHwndDesktop);

 // Allocate transfer object to link acquisition and buffer

 SapTransfer *pTransfer = new SapTransfer(XferCallback, pView);

 pTransfer->AddPair(SapXferPair(pAcq, pBuffer));

 // Create resources for all objects

 BOOL success = pAcq->Create();

 success = pBuffer->Create();

 success = pView->Create();

 success = pTransfer->Create();

 // Start a continuous transfer (live grab)

 success = pTransfer->Grab();

 printf("Press any key to stop grab\n");

 getch();

 // Stop the transfer and wait (timeout = 5 seconds)

 success = pTransfer->Freeze();

 success = pTransfer->Wait(5000);

 printf("Press any key to terminate\n");

 getch();

 // Release resources for all objects

 success = pTransfer->Destroy();

 success = pView->Destroy();

 success = pBuffer->Destroy();

 success = pAcq->Destroy();

 // Free all objects

 delete pTransfer;

 delete pView;

 delete pBuffer;

 delete pAcq;

 return 0;

}

For more details, see the Sapera LT ++ Programmer’s Manual and the source code for the demos

and examples included with Sapera LT.

Sapera LT User's Manual Acquiring Images • 43

Sapera LT .NET – Sample Acquisition Code
The following sample code demonstrates grabbing a live image into a buffer allocated in system

memory using the X64 Xcelera-CL PX4 board as the acquisition device.

Acquiring an image requires one file (the CCF file) to configure the acquisition hardware. It defines

both the characteristics of the camera and how it will be used with the acquisition hardware. Refer

to Using the CamExpert Tool in the Sapera LT User’s Introduction manual for information on

generating this file. Resource parameters can also be accessed individually.

After the acquisition module is initialized using the CCF file, a compatible buffer can be created

using settings taken directly from the acquisition.

Before initiating the actual transfer you must create a transfer object to link the acquisition and the

buffer objects. Furthermore when stopping a transfer, you must call the Wait method in the

SapTransfer class to wait for the transfer process to terminate.

Example Program using C#

// Transfer event handler is called each time a complete frame is transferred

static void SapTransfer_XferNotify(object sender, SapXferNotifyEventArgs args)

{

 SapView view = args.Context as SapView;

 view.Show();

}

static void Main(string[] args)

{

 // Allocate acquisition object

 SapAcquisition acq = new SapAcquisition(

 new SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer buffer = new SapBuffer(1, acq, SapBuffer.MemoryType.ScatterGather);

 // Allocate view object, images will be displayed directly on the desktop

 SapView view = new SapView(buffer);

 // Allocate transfer object to link acquisition and buffer

 SapTransfer transfer = new SapTransfer();

 transfer.AddPair(new SapXferPair(acq, buffer));

 transfer.Pairs[0].EventType = SapXferPair.XferEventType.EndOfFrame;

 transfer.XferNotify += new SapXferNotifyHandler(SapTransfer_XferNotify);

 transfer.XferNotifyContext = view;

 // Create resources for all objects

 bool success = acq.Create();

 success = buffer.Create();

 success = view.Create();

 success = transfer.Create();

 // Start a continuous transfer (live grab)

 success = transfer.Grab();

 Console.WriteLine("Press any key to stop grab");

 Console.ReadKey(true);

 // Stop the transfer and wait (timeout = 5 seconds)

 success = transfer.Freeze();

 success = transfer.Wait(5000);

 Console.WriteLine("Press any key to terminate");

 Console.ReadKey(true);

 // Release resources for all objects

 success = transfer.Destroy();

 success = view.Destroy();

 success = buffer.Destroy();

 success = acq.Destroy();

 // Free all objects

 transfer.Dispose();

44 • Acquiring Images Sapera LT User's Manual

 view.Dispose();

 buffer.Dispose();

 acq.Dispose();

}

Equivalent Program using Visual Basic .NET

' Transfer event handler is called each time a complete frame is transferred

Sub SapTransfer_XferNotify(ByVal sender As Object, _

 ByVal args As SapXferNotifyEventArgs)

 Dim view As SapView = args.Context

 view.Show()

End Sub

Sub Main()

 ' Allocate acquisition object

 Dim acq As SapAcquisition = New SapAcquisition(_

 New SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf")

 ' Allocate buffer object, taking settings directly from the acquisition

 Dim buffer As SapBuffer = New SapBuffer(1, acq, SapBuffer.MemoryType.ScatterGather)

 ' Allocate view object, images will be displayed directly on the desktop

 Dim view As SapView = New SapView(buffer)

 ' Allocate transfer object to link acquisition and buffer

 Dim transfer As SapTransfer = New SapTransfer()

 transfer.AddPair(New SapXferPair(acq, buffer))

 transfer.Pairs(0).EventType = SapXferPair.XferEventType.EndOfFrame

 AddHandler transfer.XferNotify, AddressOf SapTransfer_XferNotify

 transfer.XferNotifyContext = view

 ' Create resources for all objects

 Dim success As Boolean = acq.Create()

 success = buffer.Create()

 success = view.Create()

 success = transfer.Create()

 ' Start a continuous transfer (live grab)

 success = transfer.Grab()

 Console.WriteLine("Press any key to stop grab")

 Console.ReadKey(True)

 ' Stop the transfer and wait (timeout = 5 seconds)

 success = transfer.Freeze()

 success = transfer.Wait(5000)

 Console.WriteLine("Press any key to terminate")

 Console.ReadKey(True)

 ' Release resources for all objects

 success = transfer.Destroy()

 success = view.Destroy()

 success = buffer.Destroy()

 success = acq.Destroy()

 ' Free all objects

 transfer.Dispose()

 view.Dispose()

 buffer.Dispose()

 acq.Dispose()

End Sub

Sapera LT User's Manual Acquiring Images • 45

Equivalent Example using C++

// Transfer event handler is called each time a complete frame is transferred

static void SapTransfer_XferNotify(Object^ sender, SapXferNotifyEventArgs^ args)

{

 SapView^ pView = safe_cast<SapView^>(args->Context);

 pView->Show();

}

int main(array<String ^>^ args)

{

 // Allocate acquisition object

 SapAcquisition^ pAcq = gcnew SapAcquisition(

 gcnew SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer^ pBuffer = gcnew SapBuffer(1, pAcq,

 SapBuffer::MemoryType::ScatterGather);

 // Allocate view object, images will be displayed directly on the desktop

 SapView^ pView = gcnew SapView(pBuffer);

 // Allocate transfer object to link acquisition and buffer

 SapTransfer^ pTransfer = gcnew SapTransfer();

 pTransfer->AddPair(gcnew SapXferPair(pAcq, pBuffer));

 pTransfer->Pairs[0]->EventType = SapXferPair::XferEventType::EndOfFrame;

 pTransfer->XferNotify += gcnew SapXferNotifyHandler(SapTransfer_XferNotify);

 pTransfer->XferNotifyContext = pView;

 // Create resources for all objects

 bool success = pAcq->Create();

 success = pBuffer->Create();

 success = pView->Create();

 success = pTransfer->Create();

 // Start a continuous transfer (live grab)

 success = pTransfer->Grab();

 Console::WriteLine("Press any key to stop grab");

 Console::ReadKey(true);

 // Stop the transfer and wait (timeout = 5 seconds)

 success = pTransfer->Freeze();

 success = pTransfer->Wait(5000);

 Console::WriteLine("Press any key to terminate");

 Console::ReadKey(true);

 // Release resources for all objects

 success = pTransfer->Destroy();

 success = pView->Destroy();

 success = pBuffer->Destroy();

 success = pAcq->Destroy();

 // Free all objects

 // Note that the delete operator actually calls the Dispose method

 delete pTransfer;

 delete pView;

 delete pBuffer;

 delete pAcq;

 return 0;

}

For detailed information see the source code for the Sapera LT .NET demos and examples included

with Sapera LT.

46 • Acquiring Images Sapera LT User's Manual

Sapera LT ++ – Modifying Frame-Grabber Parameters
The code samples below are examples for individual and group parameter changes, including a

triggered acquisition sample. For more details, see the Sapera LT ++ Programmer’s Manual and

the Sapera Basic Modules Reference Manual.

Modifying Parameters Individually

Acquisition parameters can be modified individually by using the SapAcquisition::SetParameter

method. When a new parameter value is requested that value is verified against the current state

of the acquisition module and the acquisition module capabilities. If the modification request is

denied because the parameter is dependent on other parameters, then all the parameters in

question must be modified by group.

// Allocate and create resources for acquisition object

SapAcquisition *pAcq =

 new SapAcquisition(SapLocation(“X64-CL_1”, 0), “MyCamera.ccf”);

BOOL success = pAcq->Create();

// Try changing the sync source to Composite Sync

success = pAcq->SetParameter(CORACQ_PRM_SYNC, CORACQ_VAL_SYNC_COMP_SYNC);

// Release resources for acquisition object, and free it

success = pAcq->Destroy();

delete pAcq;

Triggered Acquisition Example

The following code sample demonstrates how to set individual parameters, using the

SapAcquisition class SetParameter function, to perform a triggered acquisition (area scan camera).

These parameters are set after creating your acquisition object and resources, and before

grabbing.

 pAcq->SetParameter(CORACQ_PRM_EXT_TRIGGER_LEVEL, CORACQ_VAL_LEVEL_TTL);

 pAcq->SetParameter(CORACQ_PRM_EXT_TRIGGER_ENABLE, CORACQ_VAL_EXT_TRIGGER_ON);

 pAcq->SetParameter(CORACQ_PRM_EXT_TRIGGER_DETECTION, CORACQ_VAL_RISING_EDGE);

Modifying Parameters by Group

Acquisition parameters can be modified by groups using the optional updateNow parameter to the

SapAcquisition::SetParameter method. When a new set of values is written, all modified

parameters are verified against the given state and capabilities of the acquisition object.

// Allocate and create resources for acquisition object

SapAcquisition *pAcq =

 new SapAcquisition(SapLocation(“X64-CL_1”, 0), “MyCamera.ccf”);

BOOL success = pAcq->Create();

// Try changing the cropping and scaling parameters

success = pAcq->SetParameter(CORACQ_PRM_CROP_WIDTH, 640, FALSE);

success = pAcq->SetParameter(CORACQ_PRM_CROP_HEIGTH, 480, FALSE);

success = pAcq->SetParameter(CORACQ_PRM_SCALE_HORZ, 640, FALSE);

success = pAcq->SetParameter(CORACQ_PRM_SCALE_VERT, 480, TRUE);

// Release resources for acquisition object, and free it

success = pAcq->Destroy();

delete pAcq;

Sapera LT User's Manual Acquiring Images • 47

Sapera LT .NET – Modifying Frame-Grabber
Parameters
The code samples below are examples for individual and group parameter changes. including a

triggered acquisition sample. These are presented for C#, Visual Basic .NET, and C++.

Modifying Parameters Individually

Acquisition parameters can be modified individually by using the SetParameter method of

SapAcquisition. When a new parameter value is requested that value is verified against the current

state of the acquisition module and the acquisition module capabilities. If the modification request

is denied because the parameter is dependent on other parameters, then all the parameters in

question must be modified by group.

Sample Code for C#

// Allocate and create resources for acquisition object

SapAcquisition acq =

 new SapAcquisition(new SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

bool success = acq.Create();

// Change the sync source to Composite Sync

success = acq.SetParameter(SapAcquisition.Prm.SYNC,

 SapAcquisition.Val.SYNC_COMP_SYNC, true);

// Release resources for acquisition object, and free it

success = acq.Destroy();

acq.Dispose();

Equivalent Code for Visual Basic .NET

' Allocate and create resources for acquisition object

Dim acq As SapAcquisition = _

 New SapAcquisition(New SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf")

Dim success As Boolean = acq.Create()

' Change the sync source to Composite Sync

success = acq.SetParameter(SapAcquisition.Prm.SYNC, _

 SapAcquisition.Val.SYNC_COMP_SYNC, True)

' Release resources for acquisition object, and free it

success = acq.Destroy()

acq.Dispose()

Equivalent Code for C++

// Allocate and create resources for acquisition object

SapAcquisition^ pAcq =

 gcnew SapAcquisition(gcnew SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

bool success = pAcq->Create();

// Change the sync source to Composite Sync

success = pAcq->SetParameter(SapAcquisition::Prm::SYNC,

 SapAcquisition::Val::SYNC_COMP_SYNC, true);

// Release resources for acquisition object, and free it

// Note that the delete operator actually calls the Dispose method

success = pAcq->Destroy();

delete pAcq;

For more details, see the Sapera Basic Modules Reference Manual.

48 • Acquiring Images Sapera LT User's Manual

Triggered Acquisition Example

The following shows how to set individual parameters using the SetParameter method of

SapAcquisition, to perform a triggered acquisition (area scan camera). These parameters are set

after creating the SapAcquisition object and before grabbing.

Sample code for C#

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_LEVEL,

 SapAcquisition.Val.LEVEL_TTL, true);

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_ENABLE,

 SapAcquisition.Val.EXT_TRIGGER_ON, true);

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_DETECTION,

 SapAcquisition.Val.RISING_EDGE, true);

Equivalent Code for Visual Basic .NET

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_LEVEL, _

 SapAcquisition.Val.LEVEL_TTL, True)

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_ENABLE, _

 SapAcquisition.Val.EXT_TRIGGER_ON, True)

success = acq.SetParameter(SapAcquisition.Prm.EXT_TRIGGER_DETECTION, _

 SapAcquisition.Val.RISING_EDGE, True)

Equivalent Code for C++

success = pAcq->SetParameter(SapAcquisition::Prm::EXT_TRIGGER_LEVEL,

 SapAcquisition::Val::LEVEL_TTL, true);

success = pAcq->SetParameter(SapAcquisition::Prm::EXT_TRIGGER_ENABLE,

 SapAcquisition::Val::EXT_TRIGGER_ON, true);

success = pAcq->SetParameter(SapAcquisition::Prm::EXT_TRIGGER_DETECTION,

 SapAcquisition::Val::RISING_EDGE, true);

Modifying Parameters by Group

Acquisition parameters can be modified by groups using the updateNow argument of the

SetParameter method of SapAcquisition. When a new set of values is written all modified

parameters are verified against the given state and capabilities of the SapAcquisition object.

Sample Code for C#

// Change the cropping and scaling parameters

success = acq.SetParameter(SapAcquisition.Prm.CROP_WIDTH, 640, false);

success = acq.SetParameter(SapAcquisition.Prm.CROP_HEIGHT, 480, false);

success = acq.SetParameter(SapAcquisition.Prm.SCALE_HORZ, 640, false);

success = acq.SetParameter(SapAcquisition.Prm.SCALE_VERT, 480, true);

Equivalent Code for Visual Basic .NET

' Change the cropping and scaling parameters

success = acq.SetParameter(SapAcquisition.Prm.CROP_WIDTH, 640, False)

success = acq.SetParameter(SapAcquisition.Prm.CROP_HEIGHT, 480, False)

success = acq.SetParameter(SapAcquisition.Prm.SCALE_HORZ, 640, False)

success = acq.SetParameter(SapAcquisition.Prm.SCALE_VERT, 480, True)

Equivalent Code for C++

// Change the cropping and scaling parameters

success = pAcq->SetParameter(SapAcquisition::Prm::CROP_WIDTH, 640, false);

success = pAcq->SetParameter(SapAcquisition::Prm::CROP_HEIGHT, 480, false);

success = pAcq->SetParameter(SapAcquisition::Prm::SCALE_HORZ, 640, false);

success = pAcq->SetParameter(SapAcquisition::Prm::SCALE_VERT, 480, true);

For more details, see the Sapera Basic Modules Reference Manual.

Sapera LT User's Manual Acquiring Images • 49

Sapera LT ++ – Using an Input Lookup Table
When you call the Create method for a SapAcquisition object an internal lookup table object

(SapLut) is automatically created inside the object, if the acquisition hardware supports lookup

tables.

You may then retrieve it using the SapAcquisition::GetLut method, manipulate it using the

methods in the SapLut Class, and reprogram it using the SapAcquisition::ApplyLut method.

The internal SapLut object is automatically destroyed when you call the SapAcquisition::Destroy

method. The following code is an example of these steps.

Sample Code

// Allocate and create resources for acquisition object

SapAcquisition pAcq =

 new SapAcquisition(SapLocation(“X64-CL_1”, 0), “MyCamera.ccf”);

BOOL success = pAcq->Create();

// Try changing the acquisition lookup table using a custom mapping

// The GetLut method returns NULL if there is no acquisition LUT

SapLut pLut = pAcq->GetLut();

// Allocate working memory for the new lookup table data

char *pNewData = new char[pLut->GetTotalSize()];

// Fill contents of data buffer …

// Write new data to lookup table

pLut->Write(0, pNewData, pLut->GetTotalSize());

// Program the acquisition hardware with the new LUT data

pAcq->ApplyLut();

// Free working memory

delete [] pNewData;

// Release resources for acquisition object, and free it

success = pAcq->Destroy();

delete pAcq;

50 • Acquiring Images Sapera LT User's Manual

Sapera LT .NET – Using an Input Lookup Table
When you call the Create method for a SapAcquisition object an internal lookup table object

(SapLut) is automatically created inside the object, if the acquisition hardware supports lookup

tables.

You may then retrieve it using the Lut property of SapAcquisition, manipulate it using the methods

in SapLut, and reprogram it using the ApplyLut method of SapAcquisition.

The internal SapLut object is automatically destroyed when you call the Destroy method of

SapAcquisition.

Sample Code for C#

// Allocate and create resources for acquisition object

SapAcquisition acq =

 new SapAcquisition(new SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

bool success = acq.Create();

// Change the first acquisition lookup table using a custom mapping.

// The Luts property returns null if there is no acquisition LUT.

SapLut lut = acq.Luts[0];

// C# needs an unsafe block to work with pointers

unsafe

{

 // Allocate working memory for the new lookup table data

 byte[] newData = new byte[lut.TotalSize];

 fixed (byte* pNewData = newData)

 {

 // Fill contents of data buffer …

 // Write new data to lookup table

 success = lut.Write(0, pNewData, lut.TotalSize);

 }

}

// Program the acquisition hardware with the new LUT data

success = acq.ApplyLut(true, 0);

// Release resources for acquisition object, and free it

success = acq.Destroy();

acq.Dispose();

Sapera LT User's Manual Acquiring Images • 51

Equivalent Code for Visual Basic .NET

' Allocate and create resources for acquisition object

Dim acq As SapAcquisition = _

 New SapAcquisition(New SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf")

Dim success As Boolean = acq.Create()

' Change the first acquisition lookup table using a custom mapping.

' The Luts property returns Nothing if there is no acquisition LUT.

Dim lut As SapLut = acq.Luts(0)

' Visual Basic cannot use methods with pointer arguments like the Write

' method of SapLut. Use one of the predefined LUT mappings instead.

success = lut.Reverse()

' Program the acquisition hardware with the new LUT data

success = acq.ApplyLut(True, 0)

' Release resources for acquisition object, and free it

success = acq.Destroy()

acq.Dispose()

Equivalent Code for C++

// Allocate and create resources for acquisition object

SapAcquisition^ pAcq = gcnew SapAcquisition(

 gcnew SapLocation("Xcelera-CL_PX4_1", 0), "MyCamera.ccf");

bool success = pAcq->Create();

// Change the first acquisition lookup table using a custom mapping.

// The Lut property returns nullptr if there is no acquisition LUT.

SapLut^ pLut = pAcq->Luts[0];

// Allocate working memory for the new lookup table data

char *pNewData = new char[pLut->TotalSize];

// Fill contents of data buffer

// Write new data to lookup table

success = pLut->Write(0, pNewData, pLut->TotalSize);

// Program the acquisition hardware with the new LUT data

success = pAcq->ApplyLut(true, 0);

// Free working memory

delete [] pNewData;

// Release resources for acquisition object, and free it

// Note that the delete operator actually calls the Dispose method

success = pAcq->Destroy();

delete pAcq;

Sapera LT ++ – Camera Acquisition Example
The camera acquisition example demonstrates how to grab a live image into a buffer allocated

within system memory using the Genie M640 camera as an acquisition device. Acquiring an image

can be performed either by using the camera default settings (feature values stored in the camera)

or by loading a configuration file. The configuration file can be generated using CamExpert.

After the SapAcqDevice class is initialized (with or without using a configuration file), certain

parameters are retrieved from it (acquisition width, height, and format) to create a compatible

buffer.

Before starting the transfer, you must create a transfer path between the SapAcqDevice class and

the SapBuffer class using one of the SapTransfer’s derived classes (SapAcqDeviceToBuf in this

case). Furthermore when requesting a transfer stop, you must call SapTransfer::Wait to wait for

the transfer process to terminate completely.

52 • Acquiring Images Sapera LT User's Manual

Sample Code

// Transfer callback function is called each time a complete frame is transferred

//

void XferCallback(SapXferCallbackInfo *pInfo)

{

 // Display the last transferred frame

 SapView *pView = (SapView *) pInfo->GetContext();

 pView->Show();

}

// Example program

//

main()

{

 // Allocate acquisition object

 SapAcqDevice *pAcq =

 new SapAcqDevice("Genie_M640_1", FALSE); // uses camera default settings

 //new SapAcqDevice("Genie_M640", "MyCamera.ccf"); // loads configuration file

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer *pBuffer = new SapBuffer(1, pAcq);

 // Allocate view object to display in an internally created window

 SapView *pView = new SapView(pBuffer, (HWND)-1);

 // Allocate transfer object to link acquisition and buffer

 SapAcqDeviceToBuf *pTransfer =

 new SapAcqDeviceToBuf(pAcq, pBuffer, XferCallback, pView);

 // Create resources for all objects

 BOOL success = pAcq->Create();

 success = pBuffer->Create();

 success = pView->Create();

 success = pTransfer->Create();

 // Start a continuous transfer (live grab)

 success = pTransfer->Grab();

 printf("Press any key to stop grab\n");

 getch();

 // Stop the transfer and wait (timeout = 5 seconds)

 success = pTransfer->Freeze();

 success = pTransfer->Wait(5000);

 printf("Press any key to terminate\n");

 getch();

 // Release resources for all objects

 success = pTransfer->Destroy();

 success = pView->Destroy();

 success = pBuffer->Destroy();

 success = pAcq->Destroy();

 // Free all objects

 delete pTransfer;

 delete pView;

 delete pBuffer;

 delete pAcq;

 return 0;

}

Sapera LT User's Manual Acquiring Images • 53

Sapera LT .NET – Camera Acquisition Example
The camera acquisition example demonstrates how to grab a live image into a buffer allocated

within system memory using the Genie M640 camera as an acquisition device. Acquiring an image

can be performed either by using the camera default settings (feature values stored in the camera)

or by loading a configuration file (which can be generated using CamExpert).

After the SapAcqDevice object is initialized (with or without a configuration file), certain

parameters are retrieved from it (acquisition width, height, and format) to create a compatible

buffer.

Before starting the transfer, you must create a transfer path between the SapAcqDevice and the

SapBuffer objects using the SapTransfer class or one of the specialized transfer classes

(SapAcqDeviceToBuf in this case). Furthermore when requesting a transfer stop, you must call the

Wait method of SapTransfer to wait for the transfer process to terminate completely.

Sample Code for C#

// Transfer event handler is called each time a complete frame is transferred

static void SapTransfer_XferNotify(object sender, SapXferNotifyEventArgs args)

{

 SapView view = args.Context as SapView;

 view.Show();

}

static void Main(string[] args)

{

 // Allocate acquisition object using default camera settings

 SapAcqDevice acqDevice = new SapAcqDevice(new SapLocation("Genie_M640_1", 0));

 // Allocate acquisition object using a camera configuration file

 //SapAcqDevice acqDevice = new SapAcqDevice(new SapLocation("Genie_M640_1", 0), "MyCamera.ccf");

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer buffer = new SapBuffer(1, acqDevice,

 SapBuffer.MemoryType.ScatterGather);

 // Allocate view object to display in an internally created window

 SapView view = new SapView(buffer);

 // Allocate transfer object to link acquisition and buffer

 SapAcqDeviceToBuf transfer = new SapAcqDeviceToBuf(acqDevice, buffer);

 transfer.Pairs[0].EventType = SapXferPair.XferEventType.EndOfFrame;

 transfer.XferNotify += new SapXferNotifyHandler(SapTransfer_XferNotify);

 transfer.XferNotifyContext = view;

 // Create resources for all objects

 bool success = acqDevice.Create();

 success = buffer.Create();

 success = view.Create();

 success = transfer.Create();

 // Start a continuous transfer (live grab)

 success = transfer.Grab();

 Console.WriteLine("Press any key to stop grab\n");

 Console.ReadKey(true);

 // Stop the transfer and wait (timeout = 5 seconds)

 success = transfer.Freeze();

 success = transfer.Wait(5000);

 Console.WriteLine("Press any key to terminate\n");

 // Release resources for all objects

 success = transfer.Destroy();

 success = view.Destroy();

 success = buffer.Destroy();

 success = acqDevice.Destroy();

 // Free all objects

 transfer.Dispose();

 view.Dispose();

 buffer.Dispose();

 acqDevice.Dispose();

}

54 • Acquiring Images Sapera LT User's Manual

Equivalent Code for Visual Basic .NET

' Transfer event handler is called each time a complete frame is transferred

Sub SapTransfer_XferNotify(ByVal sender As Object, _

 ByVal args As SapXferNotifyEventArgs)

 Dim view As SapView = args.Context

 view.Show()

End Sub

Sub Main()

 ' Allocate acquisition object using default camera settings

 Dim acqDevice As SapAcqDevice = _

 New SapAcqDevice(New SapLocation("Genie_M640_1", 0))

 ' Allocate acquisition object using a camera configuration file

 'Dim acqDevice As SapAcqDevice = New SapAcqDevice(_

 'New SapLocation("Genie_M640_1", 0), "MyCamera.ccf")

 ' Allocate buffer object, taking settings directly from the acquisition

 Dim buffer As SapBuffer = _

 New SapBuffer(1, acqDevice, SapBuffer.MemoryType.ScatterGather)

 ' Allocate view object to display in an internally created window

 Dim view As SapView = New SapView(buffer)

 ' Allocate transfer object to link acquisition and buffer

 Dim transfer As SapAcqDeviceToBuf = _

 New SapAcqDeviceToBuf(acqDevice, buffer)

 transfer.Pairs(0).EventType = SapXferPair.XferEventType.EndOfFrame

 AddHandler transfer.XferNotify, AddressOf SapTransfer_XferNotify

 transfer.XferNotifyContext = view

 ' Create resources for all objects

 Dim success As Boolean = acqDevice.Create()

 success = buffer.Create()

 success = view.Create()

 success = transfer.Create()

 ' Start a continuous transfer (live grab)

 success = transfer.Grab()

 Console.WriteLine("Press any key to stop grab\n")

 Console.ReadKey(True)

 ' Stop the transfer and wait (timeout = 5 seconds)

 success = transfer.Freeze()

 success = transfer.Wait(5000)

 Console.WriteLine("Press any key to terminate\n")

 ' Release resources for all objects

 success = transfer.Destroy()

 success = view.Destroy()

 success = buffer.Destroy()

 success = acqDevice.Destroy()

 ' Free all objects

 transfer.Dispose()

 view.Dispose()

 buffer.Dispose()

 acqDevice.Dispose()

End Sub

Sapera LT User's Manual Acquiring Images • 55

Equivalent Code for C++

// Transfer event handler is called each time a complete frame is transferred

static void SapTransfer_XferNotify(Object^ sender,

 SapXferNotifyEventArgs^ args)

{

 SapView^ pView = safe_cast<SapView^>(args->Context);

 pView->Show();

}

int main(array<String ^>^ args)

{

 // Allocate acquisition object using default camera settings

 SapAcqDevice^ pAcqDevice =

 gcnew SapAcqDevice(gcnew SapLocation("Genie_M640_1", 0));

 // Allocate acquisition object using a camera configuration file

 //SapAcqDevice^ pAcqDevice = gcnew SapAcqDevice(

 //gcnew SapLocation("Genie_M640_1", 0), "MyCamera.ccf");

 // Allocate buffer object, taking settings directly from the acquisition

 SapBuffer^ pBuffer =

 gcnew SapBuffer(1, pAcqDevice, SapBuffer::MemoryType::ScatterGather);

 // Allocate view object to display in an internally created window

 SapView^ pView = gcnew SapView(pBuffer);

 // Allocate transfer object to link acquisition and buffer

 SapAcqDeviceToBuf^ pTransfer =

 gcnew SapAcqDeviceToBuf(pAcqDevice, pBuffer);

 pTransfer->Pairs[0]->EventType = SapXferPair::XferEventType::EndOfFrame;

 pTransfer->XferNotify +=

 gcnew SapXferNotifyHandler(SapTransfer_XferNotify);

 pTransfer->XferNotifyContext = pView;

 // Create resources for all objects

 bool success = pAcqDevice->Create();

 success = pBuffer->Create();

 success = pView->Create();

 success = pTransfer->Create();

 // Start a continuous transfer (live grab)

 success = pTransfer->Grab();

 Console::WriteLine("Press any key to stop grab\n");

 Console::ReadKey(true);

 // Stop the transfer and wait (timeout = 5 seconds)

 success = pTransfer->Freeze();

 success = pTransfer->Wait(5000);

 Console::WriteLine("Press any key to terminate\n");

 // Release resources for all objects

 success = pTransfer->Destroy();

 success = pView->Destroy();

 success = pBuffer->Destroy();

 success = pAcqDevice->Destroy();

 // Free all objects

 // Note that the delete operator actually calls the Dispose method

 delete pTransfer;

 delete pView;

 delete pBuffer;

 delete pAcqDevice;

 return 0;

}

56 • Acquiring Images Sapera LT User's Manual

Sapera LT ++ – Modifying Camera Features
The following section describes how to modify camera features individually or by group.

Accessing Feature Information and Values

The following example shows how camera features can be accessed. Information such as type,

range and access mode can be retrieved for each supported feature. The SapAcqDevice class also

allows modifying the feature values by directly writing to the camera. To get more information on a

feature, the SapFeature object can be retrieved for a specific feature using the

SapAcqDevice::GetFeatureInfo function. The SapFeature class can then be used to determine the

properties of the feature.

In some circumstances, a set of feature values are tightly coupled together and must be written to

the camera at the same time. The next section shows how to proceed in such a case.

Sample Code for Sapera LT ++

//

// Callback Function

//

void CameraCallback(SapAcqDeviceCallbackInfo* pInfo)

{

 BOOL status;

 int eventCount;

 int eventIndex;

 char eventName[64];

 // Retrieve count, index and name of the received event

 status = pInfo->GetEventCount(&eventCount);

 status = pInfo->GetEventIndex(&eventIndex);

 status = pInfo->GetAcqDevice()->GetEventNameByIndex(eventIndex, eventName,

 sizeof(eventName));

 // Check for "Feature Value Changed" event

 if (strcmp(eventName, "Feature Value Changed") == 0)

 {

 // Retrieve index and name of the feature that has changed

 int featureIndex;

 char featureName[64];

 status = pInfo->GetFeatureIndex(&featureIndex);

 status = pInfo->GetAcqDevice()->GetFeatureNameByIndex(featureIndex, featureName,

 sizeof(featureName));

 }

}

//

// Main Program

//

main()

{

 BOOL status;

 // Create a camera object

 SapAcqDevice camera("Genie_M640_1");

 status = camera.Create();

 // Get the number of features provided by the camera

 int featureCount;

 status = camera.GetFeatureCount(&featureCount);

 // Create an empty feature object (to receive information)

 SapFeature feature("Genie_M640_1");

 status = feature.Create();

 //

 // Example 1 : Browse through the feature list

 //

 int featureIndex;

 for (featureIndex = 0; featureIndex < featureCount; featureIndex++)

 {

 char featureName[64];

Sapera LT User's Manual Acquiring Images • 57

 SapFeature::Type featureType;

 SapFeature::AccessMode featureAccessMode;

 // Get information from current feature

 // Get feature object

 status = camera.GetFeatureInfo(featureIndex, &feature);

 // Extract name and type from object

 status = feature.GetName(featureName, sizeof(featureName));

 status = feature.GetType(&featureType);

 status = feature.GetAccessMode(&featureAccessMode);

 // Get/set value from/to current feature

 switch (featureType)

 {

 // Feature is a 64-bit integer

 case SapFeature::TypeInt64:

 {

 UINT64 value;

 if (featureAccessMode == SapFeature::AccessRW)

 {

 status = camera.GetFeatureValue(featureIndex, &value);

 value += 10;

 status = camera.SetFeatureValue(featureIndex, value);

 }

 }

 break;

58 • Acquiring Images Sapera LT User's Manual

 // Feature is a boolean

 case SapFeature::TypeBool:

 {

 BOOL value;

 if (featureAccessMode == SapFeature::AccessRW)

 {

 status = camera.GetFeatureValue(featureIndex, &value);

 value = !value;

 status = camera.SetFeatureValue(featureIndex, value);

 }

 }

 break;

 // Other feature types

 // ...

 }

 }

 //

 // Example 2 : Access specific feature (integer example)

 //

 // Get feature object

 status = camera.GetFeatureInfo("Gain", &feature);

 // Extract minimum, maximum and increment values

 UINT32 min, max, inc;

 status = feature.GetMin(&min);

 status = feature.GetMax(&max);

 status = feature.GetInc(&inc);

 // Read, modify and write value

 UINT32 value;

 status = camera.GetFeatureValue("Gain", &value);

 value += 10;

 status = camera.SetFeatureValue("Gain", value);

 //

 // Example 3 : Access specific feature (enumeration example)

 //

 // Get feature object

 status = camera.GetFeatureInfo("ExposureMode", &feature);

 // Get number of items in enumeration

 int enumCount;

 status = feature.GetEnumCount(&enumCount);

 int enumIndex, enumValue;

 char enumStr[64];

 for (enumIndex = 0; enumIndex < enumCount; enumIndex++)

 {

 // Get item string and value

 status = feature.GetEnumString(enumIndex, enumStr, sizeof(enumStr));

 status = feature.GetEnumValue(enumIndex, &enumValue);

 }

Sapera LT User's Manual Acquiring Images • 59

 // Read a value and get its associated string

 status = camera.GetFeatureValue("ExposureMode", &enumValue);

 status = feature.GetEnumStringFromValue(enumValue, enumStr, sizeof(enumStr));

 // Write a value corresponding to known string

 status = feature.GetEnumValueFromString("Programmable", &enumValue);

 status = camera.SetFeatureValue("ExposureMode", enumValue);

 //

 // Example 4 : Access specific feature (LUT example)

 //

 // Select a LUT and retrieve its size and format

 UINT32 lutNEntries, lutFormat;

 status = camera.GetFeatureValue("LUTNumberEntries", &lutNEntries);

 status = camera.GetFeatureValue("LUTFormat", &lutFormat);

 // Create and generate a compatible software LUT

 SapLut lut(lutNEntries, lutFormat);

 status = lut.Create();

 status = lut.Reverse();

 // Write LUT values to camera

 status = camera.SetFeatureValue("LUTData", &lut);

 //

 // Example 5 : Callback management

 //

 // Browse event list

 int numEvents;

 status = camera.GetEventCount(&numEvents);

 int eventIndex;

 for (eventIndex = 0; eventIndex < numEvents; eventIndex++)

 {

 char eventName[64];

 status = camera.GetEventNameByIndex(eventIndex, eventName, sizeof(eventName));

 }

 // Register event by name

 status = camera.RegisterCallback("Feature Value Changed", CameraCallback, NULL);

 // Modified a feature (Will trigger callback function)

 status = camera.SetFeatureValue("Gain", 80);

 // Unregister event by name

 status = camera.UnregisterCallback("Feature Value Changed");

}

60 • Acquiring Images Sapera LT User's Manual

Writing Feature Values by Group

When a series of features are tightly coupled, they are difficult to modify without following a

specific order. For example, a region-of-interest (ROI) has four values (OffsetX, OffsetY, Width and

Height) that are inter-dependent and must be defined as a group. To solve this problem, the

SapAcqDevice class allows you to temporarily set the feature values in an “internal cache” and then

download the values to the camera at the same time. The following code illustrates this process

using an ROI example.

Sample Code for Sapera LT ++

 …

 // Set manual mode to update features

 success = pAcq->SetUpdateFeatureMode(SapAcqDevice::UpdateFeatureManual);

 // Set buffer left position (in the internal cache only)

 success = pAcq->SetFeatureValue("OffsetX", 50);

 // Set buffer top position (in the internal cache only)

 success = pAcq->SetFeatureValue("OffsetY", 50);

 // Set buffer width (in the internal cache only)

 success = pAcq->SetFeatureValue("Width", 300);

 // Set buffer height (in the internal cache only)

 success = pAcq->SetFeatureValue("Height", 300);

 // Write features to device (by reading values from the internal cache)

 success = pAcq->UpdateFeaturesToDevice();

 // Set back the automatic mode

 success = pAcq->SetUpdateFeatureMode(SapAcqDevice::UpdateFeatureAuto);

 …

For more details, see the Sapera LT ++ Programmer’s Manual.

Sapera LT User's Manual Acquiring Images • 61

Sapera LT .NET – Modifying Camera Features
The following section describes how to modify camera features individually or by group.

Accessing Feature Information and Values

The following example shows how features of the camera can be accessed. Information such as

type, range and access mode can be retrieved for each supported feature. The SapAcqDevice class

also allows modifying the feature values by directly writing to the camera. In some circumstances a

set of feature values are tightly coupled together and must be written to the camera at the same

time. The next section shows how to proceed in such a case.

Sample Code for C#

// Event handler

public static void

AcqDevice_AcqDeviceNotify(Object sender, SapAcqDeviceNotifyEventArgs args)

{

 SapAcqDevice acqDevice = sender as SapAcqDevice;

 // Retrieve count, index and name of the received event

 int eventCount = args.EventCount;

 int eventIndex = args.EventIndex;

 string eventName = acqDevice.EventNames[eventIndex];

 // Check for "Feature Value Changed" event

 if (eventName == "Feature Value Changed")

 {

 // Retrieve index and name of the feature that has changed

 int featureIndex = args.FeatureIndex;

 string featureName = acqDevice.FeatureNames[featureIndex];

 }

}

static void Main(string[] args)

{

 // Allocate acquisition object using default camera settings,

 // and create resources

 SapAcqDevice acqDevice =

 new SapAcqDevice(new SapLocation("Genie_M640_1", 0));

 bool success = acqDevice.Create();

 // Get the number of features provided by the camera

 int featureCount = acqDevice.FeatureCount;

 // Create an empty feature object (to receive information),

 // and create resources

 SapFeature feature = new SapFeature(new SapLocation("Genie_M640_1", 0));

 success = feature.Create();

 //

 // Example 1 : Browse through the feature list

 //

 for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)

 {

 // Get information from current feature

 // Get feature object

 success = acqDevice.GetFeatureInfo(featureIndex, feature);

 // Extract name and type from object

 string featureName = feature.Name;

 SapFeature.Type featureDataType = feature.DataType;

 SapFeature.AccessMode featureAccessMode = feature.DataAccessMode;

 // Get/set value from/to current feature

 switch (featureDataType)

 {

 // Feature is a 64-bit integer

 case SapFeature.Type.Int64:

 {

 long localFeatureValue;

 if (featureAccessMode == SapFeature.AccessMode.RW)

62 • Acquiring Images Sapera LT User's Manual

 {

 success = acqDevice.GetFeatureValue(

 featureIndex, out localFeatureValue);

 localFeatureValue += 10;

 success = acqDevice.SetFeatureValue(

 featureIndex, localFeatureValue);

 }

 }

 break;

 // Feature is a boolean

 case SapFeature.Type.Bool:

 {

 bool localFeatureValue;

 if (featureAccessMode == SapFeature.AccessMode.RW)

 {

 success = acqDevice.GetFeatureValue(

 featureIndex, out localFeatureValue);

 localFeatureValue = !localFeatureValue;

 success = acqDevice.SetFeatureValue(

 featureIndex, localFeatureValue);

 }

 }

 break;

 // Other feature types

 // ...

 }

 }

 //

 // Example 2 : Access specific feature (integer example)

 //

 // Get feature object

 success = acqDevice.GetFeatureInfo("Gain", feature);

 // Extract minimum, maximum and increment values

 int featureValueMin;

 int featureValueMax;

 int featureValueIncrement;

 success = feature.GetValueMin(out featureValueMin);

 success = feature.GetValueMax(out featureValueMax);

 success = feature.GetValueIncrement(out featureValueIncrement);

 // Read, modify and write value

 int featureValue;

 success = acqDevice.GetFeatureValue("Gain", out featureValue);

 featureValue += 10;

 success = acqDevice.SetFeatureValue("Gain", featureValue);

 //

 // Example 3 : Access specific feature (enumeration example)

 //

 // Get feature object

 success = acqDevice.GetFeatureInfo("ExposureMode", feature);

 // Get number of items in enumeration

 int featureEnumCount = feature.EnumCount;

 // Get all enumeration strings and values

 string[] featureEnumText = feature.EnumText;

 int[] featureEnumValues = feature.EnumValues;

 // Get individual enumeration strings and values

 string enumText;

 int enumValue;

 for (int featureEnumIndex = 0; featureEnumIndex < featureEnumCount;

 featureEnumIndex++)

 {

 enumText = featureEnumText[featureEnumIndex];

 enumValue = featureEnumValues[featureEnumIndex];

 }

 // Read a value and get its associated string

 success = acqDevice.GetFeatureValue("ExposureMode", out enumValue);

 success = feature.GetEnumTextFromValue(enumValue, out enumText);

Sapera LT User's Manual Acquiring Images • 63

 // Write a value corresponding to known string

 success = feature.GetEnumValueFromText("Programmable", out enumValue);

 success = acqDevice.SetFeatureValue("ExposureMode", enumValue);

 //

 // Example 4 : Access specific feature (LUT example)

 //

 // Select a LUT and retrieve its size and format

 int numLutEntries;

 int lutFormat;

 success = acqDevice.GetFeatureValue("LUTNumberEntries", out numLutEntries);

 success = acqDevice.GetFeatureValue("LUTFormat", out lutFormat);

 // This cast is OK, because the "LUTFormat" feature uses the same values

 // as the SapFormat enumeration

 SapFormat saperaLutFormat = (SapFormat)lutFormat;

 // Create and generate a compatible software LUT

 SapLut lut = new SapLut(numLutEntries, saperaLutFormat);

 success = lut.Create();

 success = lut.Reverse();

 // Write LUT values to camera

 success = acqDevice.SetFeatureValue("LUTData", lut);

 //

 // Example 5 : Callback management

 //

 // Get all event names

 string[] eventNames = acqDevice.EventNames;

 // Browse event list

 int numEvents = acqDevice.EventCount;

 for (int eventIndex = 0; eventIndex < numEvents; eventIndex++)

 {

 string eventName = eventNames[eventIndex];

 }

 // Enable event by name

 success = acqDevice.EnableEvent("Feature Value Changed");

 acqDevice.AcqDeviceNotify +=

 new SapAcqDeviceNotifyHandler(AcqDevice_AcqDeviceNotify);

 // Modify a feature (will trigger an event)

 success = acqDevice.SetFeatureValue("Gain", 80);

 // Disable event by name

 acqDevice.AcqDeviceNotify -=

 new SapAcqDeviceNotifyHandler(AcqDevice_AcqDeviceNotify);

 // Release resources for all objects

 success = lut.Destroy();

 success = feature.Destroy();

 success = acqDevice.Destroy();

 // Free all objects

 lut.Dispose();

 feature.Dispose();

 acqDevice.Dispose();

}

64 • Acquiring Images Sapera LT User's Manual

Equivalent Code for Visual Basic .NET

' Event handler

Sub AcqDevice_AcqDeviceNotify(ByVal sender As Object, _

 ByVal args As SapAcqDeviceNotifyEventArgs)

 Dim acqDevice As SapAcqDevice = sender

 ' Retrieve count, index and name of the received event

 Dim eventCount As Integer = args.EventCount

 Dim eventIndex As Integer = args.EventIndex

 Dim eventName As String = acqDevice.EventNames(eventIndex)

 ' Check for "Feature Value Changed" event

 If eventName = "Feature Value Changed" Then

 ' Retrieve index and name of the feature that has changed

 Dim featureIndex As Integer = args.FeatureIndex

 Dim featureName As String = acqDevice.FeatureNames(featureIndex)

 End If

End Sub

Sub Main()

 ' Allocate acquisition object using default camera settings,

 ' and create resources

 Dim acqDevice As SapAcqDevice = _

 New SapAcqDevice(New SapLocation("Genie_M640_1", 0))

 Dim success As Boolean = acqDevice.Create()

 ' Get the number of features provided by the camera

 Dim featureCount As Integer = acqDevice.FeatureCount

 ' Create an empty feature object (to receive information),

 ' and create resources

 Dim feature As SapFeature = _

 New SapFeature(New SapLocation("Genie_M640_1", 0))

 success = feature.Create()

 '

 ' Example 1 : Browse through the feature list

 '

 For featureIndex As Integer = 0 To featureCount - 1

 ' Get information from current feature

 ' Get feature object

 success = acqDevice.GetFeatureInfo(featureIndex, feature)

 ' Extract name and type from object

 Dim featureName As String = feature.Name

 Dim featureDataType As SapFeature.Type = feature.DataType

 Dim featureAccessMode As SapFeature.AccessMode = feature.DataAccessMode

 ' Get/set value from/to current feature

 Select Case featureDataType

 ' Feature is a 64-bit integer

 Case SapFeature.Type.Int64

 Dim localFeatureValue As Long

 If featureAccessMode = SapFeature.AccessMode.RW Then

 success = acqDevice.GetFeatureValue(_

 featureIndex, localFeatureValue)

 localFeatureValue += 10

 success = acqDevice.SetFeatureValue(_

 featureIndex, localFeatureValue)

 End If

 ' Feature is a boolean

 Case SapFeature.Type.Bool

 Dim localFeatureValue As Boolean

 If featureAccessMode = SapFeature.AccessMode.RW Then

 success = acqDevice.GetFeatureValue(_

 featureIndex, localFeatureValue)

 localFeatureValue = Not localFeatureValue

 success = acqDevice.SetFeatureValue(_

 featureIndex, localFeatureValue)

 End If

 Case Else

 ' Other feature types

 ' ...

 End Select

Sapera LT User's Manual Acquiring Images • 65

 Next

 '

 ' Example 2 : Access specific feature (integer example)

 '

 ' Get feature object

 success = acqDevice.GetFeatureInfo("Gain", feature)

 ' Extract minimum, maximum and increment values

 Dim featureValueMin As Integer

 Dim featureValueMax As Integer

 Dim featureValueIncrement As Integer

 success = feature.GetValueMin(featureValueMin)

 success = feature.GetValueMax(featureValueMax)

 success = feature.GetValueIncrement(featureValueIncrement)

 ' Read, modify and write value

 Dim featureValue As Integer

 success = acqDevice.GetFeatureValue("Gain", featureValue)

 featureValue = featureValue + 10

 success = acqDevice.SetFeatureValue("Gain", featureValue)

 '

 ' Example 3 : Access specific feature (enumeration example)

 '

 ' Get feature object

 success = acqDevice.GetFeatureInfo("ExposureMode", feature)

 ' Get number of items in enumeration

 Dim featureEnumCount As Integer = feature.EnumCount

 ' Get all enumeration strings and values

 Dim featureEnumText() As String = feature.EnumText

 Dim featureEnumValues() As Integer = feature.EnumValues

 ' Get individual enumeration strings and values

 Dim enumText As String = Nothing

 Dim enumValue As Integer

 For featureEnumIndex As Integer = 0 To featureEnumCount - 1

 enumText = featureEnumText(featureEnumIndex)

 enumValue = featureEnumValues(featureEnumIndex)

 Next

 ' Read a value and get its associated string

 success = acqDevice.GetFeatureValue("ExposureMode", enumValue)

 success = feature.GetEnumTextFromValue(enumValue, enumText)

 ' Write a value corresponding to known string

 success = feature.GetEnumValueFromText("Programmable", enumValue)

 success = acqDevice.SetFeatureValue("ExposureMode", enumValue)

 '

 ' Example 4 : Access specific feature (LUT example)

 '

 ' Select a LUT and retrieve its size and format

 Dim numLutEntries As Integer

 Dim lutFormat As Integer

 success = acqDevice.GetFeatureValue("LUTNumberEntries", numLutEntries)

 success = acqDevice.GetFeatureValue("LUTFormat", lutFormat)

 ' This cast is OK, because the "LUTFormat" feature uses the same values

 ' as the SapFormat enumeration

 'Dim saperaLutFormat As SapFormat = lutFormat

 ' Create and generate a compatible software LUT

 Dim lut As SapLut = New SapLut(numLutEntries, lutFormat)

 success = lut.Create()

 success = lut.Reverse()

 ' Write LUT values to camera

 success = acqDevice.SetFeatureValue("LUTData", lut)

 '

 ' Example 5 : Callback management

 '

66 • Acquiring Images Sapera LT User's Manual

 ' Get all event names

 Dim eventNames() As String = acqDevice.EventNames

 ' Browse event list

 Dim numEvents As Integer = acqDevice.EventCount

 For eventIndex As Integer = 0 To numEvents - 1

 Dim eventName As String = eventNames(eventIndex)

 Next

 ' Enable event by name

 success = acqDevice.EnableEvent("Feature Value Changed")

 AddHandler acqDevice.AcqDeviceNotify, AddressOf AcqDevice_AcqDeviceNotify

 ' Modified a feature (will trigger an event)

 success = acqDevice.SetFeatureValue("Gain", 80)

 ' Disable event by name

 RemoveHandler acqDevice.AcqDeviceNotify, _

 AddressOf AcqDevice_AcqDeviceNotify

 ' Release resources for all objects

 success = lut.Destroy()

 success = feature.Destroy()

 success = acqDevice.Destroy()

 ' Free all objects

 lut.Dispose()

 feature.Dispose()

 acqDevice.Dispose()

End Sub

Equivalent Code for C++

// Event handler

static void AcqDevice_AcqDeviceNotify(Object^ sender,

 SapAcqDeviceNotifyEventArgs^ args)

{

 SapAcqDevice^ pAcqDevice = safe_cast<SapAcqDevice^>(sender);

 // Retrieve count, index and name of the received event

 int eventCount = args->EventCount;

 int eventIndex = args->EventIndex;

 String^ eventName = pAcqDevice->EventNames[eventIndex];

 // Check for "Feature Value Changed" event

 if (String::Compare(eventName, "Feature Value Changed") == 0)

 {

 // Retrieve index and name of the feature that has changed

 int featureIndex = args->FeatureIndex;

 String^ featureName = pAcqDevice->FeatureNames[featureIndex];

 }

}

// Example program

int main(array<String ^>^ args)

{

 // Allocate acquisition object using default camera settings,

 // and create resources

 SapAcqDevice^ pAcqDevice =

 gcnew SapAcqDevice(gcnew SapLocation("Genie_M640_1", 0));

 bool success = pAcqDevice->Create();

 // Get the number of features provided by the camera

 int featureCount = pAcqDevice->FeatureCount;

 // Create an empty feature object (to receive information),

 // and create resources

 SapFeature^ pFeature =

 gcnew SapFeature(gcnew SapLocation("Genie_M640_1", 0));

 success = pFeature->Create();

 //

 // Example 1 : Browse through the feature list

 //

 for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)

 {

 // Get information from current feature

Sapera LT User's Manual Acquiring Images • 67

 // Get feature object

 success = pAcqDevice->GetFeatureInfo(featureIndex, pFeature);

 // Extract name and type from object

 String^ featureName = pFeature->Name;

 SapFeature::Type featureDataType = pFeature->DataType;

 SapFeature::AccessMode featureAccessMode = pFeature->DataAccessMode;

 // Get/set value from/to current feature

 switch (featureDataType)

 {

 // Feature is a 64-bit integer

 case SapFeature::Type::Int64:

 {

 __int64 featureValue;

 if (featureAccessMode == SapFeature::AccessMode::RW)

 {

 success = pAcqDevice->GetFeatureValue(

 featureIndex, featureValue);

 featureValue += 10;

 success = pAcqDevice->SetFeatureValue(

 featureIndex, featureValue);

 }

 }

 break;

 // Feature is a boolean

 case SapFeature::Type::Bool:

 {

 bool featureValue;

 if (featureAccessMode == SapFeature::AccessMode::RW)

 {

 success = pAcqDevice->GetFeatureValue(

 featureIndex, featureValue);

 featureValue = !featureValue;

 success = pAcqDevice->SetFeatureValue(

 featureIndex, featureValue);

 }

 }

 break;

 // Other feature types

 // ...

 }

 }

 //

 // Example 2 : Access specific feature (integer example)

 //

 // Get feature object

 success = pAcqDevice->GetFeatureInfo("Gain", pFeature);

 // Extract minimum, maximum and increment values

 int featureValueMin;

 int featureValueMax;

 int featureValueIncrement;

 success = pFeature->GetValueMin(featureValueMin);

 success = pFeature->GetValueMax(featureValueMax);

 success = pFeature->GetValueIncrement(featureValueIncrement);

 // Read, modify and write value

 int featureValue;

 success = pAcqDevice->GetFeatureValue("Gain", featureValue);

 featureValue += 10;

 success = pAcqDevice->SetFeatureValue("Gain", featureValue);

 //

 // Example 3 : Access specific feature (enumeration example)

 //

 // Get feature object

 success = pAcqDevice->GetFeatureInfo("ExposureMode", pFeature);

 // Get number of items in enumeration

 int featureEnumCount = pFeature->EnumCount;

 // Get all enumeration strings and values

 array<String^>^ featureEnumText = pFeature->EnumText;

 array<int>^ featureEnumValues = pFeature->EnumValues;

68 • Acquiring Images Sapera LT User's Manual

 // Get individual enumeration strings and values

 String^ enumText;

 int enumValue;

 for (int featureEnumIndex = 0; featureEnumIndex < featureEnumCount;

 featureEnumIndex++)

 {

 enumText = featureEnumText[featureEnumIndex];

 enumValue = featureEnumValues[featureEnumIndex];

 }

 // Read a value and get its associated string

 success = pAcqDevice->GetFeatureValue("ExposureMode", enumValue);

 success = pFeature->GetEnumTextFromValue(enumValue, enumText);

 // Write a value corresponding to known string

 success = pFeature->GetEnumValueFromText("Programmable", enumValue);

 success = pAcqDevice->SetFeatureValue("ExposureMode", enumValue);

 //

 // Example 4 : Access specific feature (LUT example)

 //

 // Select a LUT and retrieve its size and format

 int numLutEntries;

 int lutFormat;

 success = pAcqDevice->GetFeatureValue("LUTNumberEntries", numLutEntries);

 success = pAcqDevice->GetFeatureValue("LUTFormat", lutFormat);

 // This cast is OK, because the "LUTFormat" feature uses the same values

 // as the SapFormat enumeration

 SapFormat saperaLutFormat = static_cast<SapFormat>(lutFormat);

 // Create and generate a compatible software LUT

 SapLut^ pLut = gcnew SapLut(numLutEntries, saperaLutFormat);

 success = pLut->Create();

 success = pLut->Reverse();

 // Write LUT values to camera

 success = pAcqDevice->SetFeatureValue("LUTData", pLut);

 //

 // Example 5 : Callback management

 //

 // Get all event names

 array<String^>^ eventNames = pAcqDevice->EventNames;

 // Browse event list

 int numEvents = pAcqDevice->EventCount;

 for (int eventIndex = 0; eventIndex < numEvents; eventIndex++)

 {

 String^ eventName = eventNames[eventIndex];

 }

 // Enable event by name

 success = pAcqDevice->EnableEvent("Feature Value Changed");

 pAcqDevice->AcqDeviceNotify +=

 gcnew SapAcqDeviceNotifyHandler(AcqDevice_AcqDeviceNotify);

 // Modified a feature (will trigger an event)

 success = pAcqDevice->SetFeatureValue("Gain", 80);

 // Disable event by name

 pAcqDevice->AcqDeviceNotify

 gcnew SapAcqDeviceNotifyHandler(AcqDevice_AcqDeviceNotify);

 // Release resources for all objects

 success = pLut->Destroy();

 success = pFeature->Destroy();

 success = pAcqDevice->Destroy();

 // Free all objects

 // Note that the delete operator actually calls the Dispose method

 delete pLut;

 delete pFeature;

 delete pAcqDevice;

 return 0;

}

Sapera LT User's Manual Acquiring Images • 69

Writing Feature Values by Group

When a series of features are tightly coupled, they are difficult to modify without following a

specific order. For example, a region-of-interest (ROI) has four values (OffsetX, OffsetY, Width and

Height) that are inter-dependent and must be defined as a group. To solve this problem, the

SapAcqDevice class allows you to temporarily set the feature values in an “internal cache” and then

download the values to the camera at the same time. The following code samples illustrate this

process using an ROI example.

Sample Code for C#

 // Set manual mode to update features

 acqDevice.UpdateMode = SapAcqDevice.UpdateFeatureMode.Manual;

 // Set buffer left position (in the internal cache only)

 success = acqDevice.SetFeatureValue("OffsetX", 50);

 // Set buffer top position (in the internal cache only)

 success = acqDevice.SetFeatureValue("OffsetY", 50);

 // Set buffer width (in the internal cache only)

 success = acqDevice.SetFeatureValue("Width", 300);

 // Set buffer height (in the internal cache only)

 success = acqDevice.SetFeatureValue("Height", 300);

 // Write features to device (by reading values from the internal cache)

 success = acqDevice.UpdateFeaturesToDevice();

 // Set back the automatic mode

 acqDevice.UpdateMode = SapAcqDevice.UpdateFeatureMode.Auto;

Equivalent Code for Visual Basic .NET

 ' Set manual mode to update features

 acqDevice.UpdateMode = SapAcqDevice.UpdateFeatureMode.Manual

 ' Set buffer left position (in the internal cache only)

 success = acqDevice.SetFeatureValue("OffsetX", 50)

 ' Set buffer top position (in the internal cache only)

 success = acqDevice.SetFeatureValue("OffsetY", 50)

 ' Set buffer width (in the internal cache only)

 success = acqDevice.SetFeatureValue("Width", 300)

 ' Set buffer height (in the internal cache only)

 success = acqDevice.SetFeatureValue("Height", 300)

 ' Write features to device (by reading values from the internal cache)

 success = acqDevice.UpdateFeaturesToDevice()

 ' Set back the automatic mode

 acqDevice.UpdateMode = SapAcqDevice.UpdateFeatureMode.Auto

70 • Acquiring Images Sapera LT User's Manual

Equivalent Code for C++

 // Set manual mode to update features

 pAcqDevice->UpdateMode = SapAcqDevice::UpdateFeatureMode::Manual;

 // Set buffer left position (in the internal cache only)

 success = pAcqDevice->SetFeatureValue("OffsetX", 50);

 // Set buffer top position (in the internal cache only)

 success = pAcqDevice->SetFeatureValue("OffsetY", 50);

 // Set buffer width (in the internal cache only)

 success = pAcqDevice->SetFeatureValue("Width", 300);

 // Set buffer height (in the internal cache only)

 success = pAcqDevice->SetFeatureValue("Height", 300);

 // Write features to device (by reading values from the internal cache)

 success = pAcqDevice->UpdateFeaturesToDevice();

 // Set back the automatic mode

 pAcqDevice->UpdateMode = SapAcqDevice::UpdateFeatureMode::Auto;

Sapera LT User's Manual Displaying Images • 71

Displaying Images

Required Classes
The following three Sapera LT ++ / Sapera LT .NET classes are required to initiate a display

process:

• SapDisplay: Manages the actual resources on the hardware display device.

• SapBuffer: Contains the data to display. Several type options may be chosen when

allocating the buffer to be compatible with the different display modes (see the "Working

with Buffers" section for more information about these options).

• SapView: Links the display to the buffer and synchronizes the display operations.

Display Examples
The example below illustrates how to display an image contained within a system buffer on the

computer VGA card. The buffer is transferred to the Windows Desktop using the DIB mode

(automatically detected by the SapView Class). When using this mode, a Windows Device-

Independent Bitmap (DIB) is first created before being sent to VGA memory.

For more details, see the Sapera LT ++ Programmer’s Manual or the Sapera LT .NET Programmer’s

Manual.

Example using the Sapera LT ++ API

// Allocate and create a 640x480x8 buffer object

SapBuffer *pBuffer = new SapBuffer(1, 640, 480, SapFormatMono8);

BOOL success = pBuffer->Create();

// Allocate and create view object, images will be displayed directly on the desktop

SapView *pView = new SapView(pBuffer, SapHwndDesktop);

success = pView->Create();

// Display the image on the desktop

pView->Show();

// Release resources for all objects

success = pView->Destroy();

success = pBuffer->Destroy();

// Free all objects

delete pView;

delete pBuffer;

72 • Displaying Images Sapera LT User's Manual

Example Code for C# using Sapera LT .NET

 // Allocate and create a 640x480x8 buffer object

 SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

 bool success = buffer.Create();

 // Allocate and create view object, images will be displayed

 // directly on the desktop

 SapView view = new SapView(buffer);

 success = view.Create();

 // Display the image on the desktop

 view.Show();

 // Release resources for all objects

 success = view.Destroy();

 success = buffer.Destroy();

 // Free all objects

 view.Dispose();

 buffer.Dispose();

Equivalent Code for Visual Basic .NET using Sapera LT .NET

 ' Allocate and create a 640x480x8 buffer object

 Dim buffer As SapBuffer = New SapBuffer(1, 640, 480, SapFormat.Mono8, _

 SapBuffer.MemoryType.ScatterGather)

 Dim success As Boolean = buffer.Create()

 ' Allocate and create view object, images will be displayed

 ' directly on the desktop

 Dim view As SapView = New SapView(buffer)

 success = view.Create()

 ' Display the image on the desktop

 view.Show()

 ' Release resources for all objects

 success = view.Destroy()

 success = buffer.Destroy()

 ' Free all objects

 view.Dispose()

 buffer.Dispose()

Equivalent Code for C++ using Sapera LT .NET

 // Allocate and create a 640x480x8 buffer object

 SapBuffer^ pBuffer = gcnew SapBuffer(1, 640, 480, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

 bool success = pBuffer->Create();

 // Allocate and create view object, images will be displayed

 // directly on the desktop

 SapView^ pView = gcnew SapView(pBuffer);

 success = pView->Create();

 // Display the image on the desktop

 pView->Show();

 // Release resources for all objects

 success = pView->Destroy();

 success = pBuffer->Destroy();

 // Free all objects

 // Note that the delete operator actually calls the Dispose method

 delete pView;

 delete pBuffer;

Sapera LT User's Manual Displaying Images • 73

Sapera LT ++ – Displaying in a Windows Application
The SapView Class includes the three methods OnPaint, OnMove, and OnSize. When your

Windows application is based on MFC, you should call these from within the OnPaint, OnMove, and

OnSize handlers in your application program. This ensures that Sapera LT ++ is aware about the

changes to the display area.

However, these methods often do not offer, especially for scroll bars, a sufficient level of

management following changes to the display area. So it is recommended that you use the

methods with the same names in the CImageWnd Class instead. Note that this class is part of the

GUI classes. Below is a partial listing of a dialog-based Windows application.

Sample Code Using the Visual C++'s MFC library

// Declarations from class header file

SapBuffer *m_pBuffer;

SapView *m_pView;

CImageWnd *m_pImageWnd;

// End declarations from class header file

CSaperaAppDlg::CSaperaAppDlg()

{

 m_pBuffer = NULL;

 m_pView = NULL;

 m_pImageWnd = NULL;

 // Other initialization

 ...

}

BOOL CSaperaAppDlg::OnInitDialog()

{

 // Call default handler

 CDialog::OnInitDialog();

 // Other initialization

 ...

 // Allocate and create a 640x480x8 buffer object

 *m_pBuffer = new SapBuffer(1, 640, 480, SapFormatMono8);

 BOOL success = m_pBuffer->Create();

 // Allocate and create view object, images will be displayed in the MFC CWnd

 // object identified by m_ViewWnd

 m_pView = new SapView(m_pBuffer, m_ViewWnd.GetSafeHwnd());

 success = m_pView->Create();

 // Create image window object. The m_HorizontalScr and m_VerticalScr arguments

 // are MFC CscrollBar objects representing the scroll bars.

 m_pImageWnd = new CImageWnd(m_pView, &m_ViewWnd,

 &m_HorizontalScr, &m_VerticalScr, this);

 return TRUE;

}

CSaperaAppDlg::OnDestroy()

{

 // Release resources for all objects

 BOOL success = m_pView->Destroy();

 success = m_pBuffer->Destroy();

 // Free all objects

 delete m_pImageWnd

 delete m_pView;

 delete m_pBuffer;

}

74 • Displaying Images Sapera LT User's Manual

void CSaperaAppDlg::OnPaint()

{

 if (IsIconic())

 {

 ...

 }

 else

 {

 // Call the default handler to paint a background

 CDialog::OnPaint();

 // Display last acquired image

 m_pImageWnd->OnPaint();

 }

}

void CSaperaAppDlg::OnSize(UINT nType, int cx, int cy)

{

 // Call default handler

 CDialog::OnSize(nType, cx, cy);

 // Make appropriate adjustment in image window

 m_pImageWnd->OnSize();

}

void CSaperaAppDlg::OnMove(int x, int y)

{

 // Call default handler

 CDialog::OnMove(x, y);

 // Make appropriate adjustment in image window

 m_pImageWnd->OnMove();

}

For more details, see the Sapera LT ++ Programmer’s Manual and the source code for the demos

and examples included with Sapera LT.

Sapera LT .NET – Displaying in a Windows
Application
The SapView Class includes the three methods OnPaint, OnMove, and OnSize. When your

application is based on Windows Forms, you should call these from within the Paint, Move, and

Size event handlers in your application program. This ensures that Sapera LT .NET is aware about

the changes to the display area.

However, these methods often do not offer, especially for scroll bars, a sufficient level of

management following changes to the display area. The Sapera LT .NET demos include an

ImageBox class (with included source code) for this purpose. Below are partial listings which do

use the ImageBox class.

Sapera LT User's Manual Displaying Images • 75

Partial C# Listing of a Windows Form Application

public static void Form_Paint(Object sender, PaintEventArgs args)

{

 // Find the SapView object corresponding to the form for this event

 Form form = sender as Form;

 SapView view = SapView.FindView(form);

 view.OnPaint();

}

public static void Form_Resize(Object sender, EventArgs args)

{

 // Find the SapView object corresponding to the form for this event

 Form form = sender as Form;

 SapView view = SapView.FindView(form);

 view.OnSize();

}

public static void Form_Move(Object sender, EventArgs args)

{

 // Find the SapView object corresponding to the form for this event

 Form form = sender as Form;

 SapView view = SapView.FindView(form);

 view.OnMove();

}

static void Main(string[] args)

{

 // Allocate and create a 640x480x8 buffer object

 SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

 bool success = buffer.Create();

 // Create the form object for showing images

 Form form = new Form();

 // Allocate and create view object, images will be displayed in the form

 SapView view = new SapView(buffer, form);

 success = view.Create();

 // Display the image in the form

 view.Show();

 // Register events for the view

 form.Paint += new PaintEventHandler(Form_Paint);

 form.Resize += new EventHandler(Form_Resize);

 form.Move += new EventHandler(Form_Move);

 // Show the form, code that follows will execute

 // when the form is manually closed

 Application.Run(form);

 // Release resources for all objects

 success = view.Destroy();

 success = buffer.Destroy();

 // Free all objects

 view.Dispose();

 buffer.Dispose();

}

76 • Displaying Images Sapera LT User's Manual

Equivalent Code for Visual Basic .NET

Sub Form_Paint(ByVal sender As Object, ByVal args As PaintEventArgs)

 ' Find the SapView object corresponding to the form for this event

 Dim form As Form = sender

 Dim view As SapView = SapView.FindView(form)

 view.OnPaint()

End Sub

Sub Form_Resize(ByVal sender As Object, ByVal args As EventArgs)

 ' Find the SapView object corresponding to the form for this event

 Dim form As Form = sender

 Dim view As SapView = SapView.FindView(form)

 view.OnSize()

End Sub

Sub Form_Move(ByVal sender As Object, ByVal args As EventArgs)

 ' Find the SapView object corresponding to the form for this event

 Dim form As Form = sender

 Dim view As SapView = SapView.FindView(form)

 view.OnMove()

End Sub

Sub Main()

 ' Allocate and create a 640x480x8 buffer object

 Dim buffer As SapBuffer = New SapBuffer(1, 640, 480, SapFormat.Mono8, _

 SapBuffer.MemoryType.ScatterGather)

 Dim success As Boolean = buffer.Create()

 ' Create the form object for showing images

 Dim form As Form = New Form()

 ' Allocate and create view object, images will be displayed in the form

 Dim view As SapView = New SapView(buffer, form)

 success = view.Create()

 ' Display the image in the form

 view.Show()

 ' Register events for the view

 AddHandler form.Paint, AddressOf Form_Paint

 AddHandler form.Resize, AddressOf Form_Resize

 AddHandler form.Move, AddressOf Form_Move

 ' Show the form, code that follows will execute

 ' when the form is manually closed

 Application.Run(form)

 ' Release resources for all objects

 success = view.Destroy()

 success = buffer.Destroy()

 ' Free all objects

 view.Dispose()

 buffer.Dispose()

End Sub

Sapera LT User's Manual Displaying Images • 77

Equivalent Code for C++

static void Form_Paint(Object^ sender, PaintEventArgs^ args)

{

 // Find the SapView object corresponding to the form for this event

 Form^ pForm = safe_cast<Form^>(sender);

 SapView^ pView = SapView::FindView(pForm);

 pView->OnPaint();

}

static void Form_Resize(Object^ sender, EventArgs^ args)

{

 // Find the SapView object corresponding to the form for this event

 Form^ pForm = safe_cast<Form^>(sender);

 SapView^ pView = SapView::FindView(pForm);

 pView->OnSize();

}

static void Form_Move(Object^ sender, EventArgs^ args)

{

 // Find the SapView object corresponding to the form for this event

 Form^ pForm = safe_cast<Form^>(sender);

 SapView^ pView = SapView::FindView(pForm);

 pView->OnMove();

}

// Example program

int main(array<String ^>^ args)

{

 // Allocate and create a 640x480x8 buffer object

 SapBuffer^ pBuffer = gcnew SapBuffer(1, 640, 480, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

 bool success = pBuffer->Create();

 // Create the form object for showing images

 Form^ pForm = gcnew Form();

 // Allocate and create view object, images will be displayed in the form

 SapView^ pView = gcnew SapView(pBuffer, pForm);

 success = pView->Create();

 // Display the image in the form

 pView->Show();

 // Register events for the view

 pForm->Paint += gcnew PaintEventHandler(Form_Paint);

 pForm->Resize += gcnew EventHandler(Form_Resize);

 pForm->Move += gcnew EventHandler(Form_Move);

 // Show the form, code that follows will execute

 // when the form is manually closed

 Application::Run(pForm);

 // Release resources for all objects

 success = pView->Destroy();

 success = pBuffer->Destroy();

 // Free all objects

 // Note that the delete operator actually calls the Dispose method

 delete pView;

 delete pBuffer;

 return 0;

}

For more details, see the Sapera LT .NET Programmer’s Manual and the source code for the demos

and examples included with Sapera LT.

78 • Working with Buffers Sapera LT User's Manual

Working with Buffers

Root and Child Buffers
A buffer object is created in one of two ways: either as a root SapBuffer object (with no parent) or

as a child SapBufferRoi object (with a parent). The parent of the child may also be a child itself,

which allows you to build a buffer hierarchy with no restriction on the number of levels. A

SapBuffer object can have more than one child SapBufferRoi object.

A SapBufferRoi object shares the same memory space as its parent, and it defines an adjustable

rectangular region of interest. A child may be used by acquisition to reduce bandwidth

requirements, or by a processing function in order to process a specific region.

Note: SapBufferRoi objects must be destroyed before their parent.

Sapera LT ++ Example – Parent Buffer with Two Children

// Allocate and create a 640x480x8 buffer object

SapBuffer *pBuffer = new SapBuffer(1, 640, 480, SapFormatMono8);

BOOL success = pBuffer->Create();

// Allocate and create a 320x240 child in the upper-left corner

SapBufferRoi *pChild1 = new SapBufferRoi(pBuffer, 0, 0, 320, 240)

success = pChild1->Create();

// Allocate and create a 320x240 child in the upper-right corner

SapBufferRoi *pChild2 = new SapBufferRoi(pBuffer, 320, 0, 320, 240)

success = pChild2->Create();

// Use buffers

...

// Release resources for all objects

success = pChild2->Destroy();

success = pChild1->Destroy();

success = pBuffer->Destroy();

// Free all objects

delete pChild2;

delete pChild1;

delete pBuffer;

You may modify the origin and dimensions of the region of interest for a child buffer object before

calling its Create method. The following example demonstrates this concept.

// Swap left and right children, and make their height the same as the parent

success = pChild1->SetRoi(320, 0, 320, 480);

success = pChild2->SetRoi(0, 0, 320, 480);

Sapera LT User's Manual Working with Buffers • 79

Sapera LT .NET C# Example – Parent Buffer with Two Children

// Allocate and create a 640x480x8 buffer object

SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

bool success = buffer.Create();

// Allocate and create a 320x240 child in the upper-left corner

SapBufferRoi child1 = new SapBufferRoi(buffer, 0, 0, 320, 240);

success = child1.Create();

// Allocate and create a 320x240 child in the upper-right corner

SapBufferRoi child2 = new SapBufferRoi(buffer, 320, 0, 320, 240);

success = child2.Create();

// Use buffers

// ...

// Release resources for all objects

success = child1.Destroy();

success = child2.Destroy();

success = buffer.Destroy();

// Free all objects

child1.Dispose();

child2.Dispose();

buffer.Dispose();

//***

//

// You may modify the origin and dimensions of the region of interest for a child //buffer object before

calling its Create method. The following C# example //demonstrates this concept.

// Allocate a 320x240 child in the upper-left corner

SapBufferRoi child1 = new SapBufferRoi(buffer, 0, 0, 320, 240);

// Allocate a 320x240 child in the upper-right corner

SapBufferRoi child2 = new SapBufferRoi(buffer, 320, 0, 320, 240);

// Swap left and right children, and make their height the same as the parent

success = child1.SetRoi(320, 0, 320, 480);

success = child2.SetRoi(0, 0, 320, 480);

// Create child buffers

success = child1.Create();

success = child2.Create();

Sapera LT .NET – Equivalent Code for Visual Basic .NET

' Allocate and create a 640x480x8 buffer object

Dim buffer As SapBuffer = New SapBuffer(1, 640, 480, SapFormat.Mono8, _

 SapBuffer.MemoryType.ScatterGather)

Dim success As Boolean = buffer.Create()

' Allocate and create a 320x240 child in the upper-left corner

Dim child1 As SapBufferRoi = New SapBufferRoi(buffer, 0, 0, 320, 240)

success = child1.Create()

' Allocate and create a 320x240 child in the upper-right corner

Dim child2 As SapBufferRoi = New SapBufferRoi(buffer, 320, 0, 320, 240)

success = child2.Create()

' Use buffers

' ...

' Release resources for all objects

success = child1.Destroy()

success = child2.Destroy()

success = buffer.Destroy()

' Free all objects

child1.Dispose()

child2.Dispose()

buffer.Dispose()

80 • Working with Buffers Sapera LT User's Manual

' ***

'

' You may modify the origin and dimensions of the region of interest for a child

' buffer object before calling its Create method. The following Visual Basic .NET

' example demonstrates this concept.

' Allocate a 320x240 child in the upper-left corner

Dim child1 As SapBufferRoi = New SapBufferRoi(buffer, 0, 0, 320, 240)

' Allocate a 320x240 child in the upper-right corner

Dim child2 As SapBufferRoi = New SapBufferRoi(buffer, 320, 0, 320, 240)

' Swap left and right children, and make their height the same as the parent

success = child1.SetRoi(320, 0, 320, 480)

success = child2.SetRoi(0, 0, 320, 480)

' Create child buffers

success = child1.Create()

success = child2.Create()

Sapera LT .NET – Equivalent Code for C++:

// Allocate and create a 640x480x8 buffer object

SapBuffer^ pBuffer = gcnew SapBuffer(1, 640, 480, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

bool success = pBuffer->Create();

// Allocate and create a 320x240 child in the upper-left corner

SapBufferRoi^ pChild1 = gcnew SapBufferRoi(pBuffer, 0, 0, 320, 240);

success = pChild1->Create();

// Allocate and create a 320x240 child in the upper-right corner

SapBufferRoi^ pChild2 = gcnew SapBufferRoi(pBuffer, 320, 0, 320, 240);

success = pChild2->Create();

// Use buffers

// ...

// Release resources for all objects

success = pChild1->Destroy();

success = pChild2->Destroy();

success = pBuffer->Destroy();

// Free all objects

// Note that the delete operator actually calls the Dispose method

delete pChild1;

delete pChild2;

delete pBuffer;

//***

//

// You may modify the origin and dimensions of the region of interest for a child

//buffer object before calling its Create method. The following C++ example

//demonstrates this concept.

// Allocate a 320x240 child in the upper-left corner

SapBufferRoi^ pChild1 = gcnew SapBufferRoi(pBuffer, 0, 0, 320, 240);

// Allocate a 320x240 child in the upper-right corner

SapBufferRoi^ pChild2 = gcnew SapBufferRoi(pBuffer, 320, 0, 320, 240);

// Swap left and right children, and make their height the same as the parent

success = pChild1->SetRoi(320, 0, 320, 480);

success = pChild2->SetRoi(0, 0, 320, 480);

// Create child buffers

success = pChild1->Create();

success = pChild2->Create();

Sapera LT User's Manual Working with Buffers • 81

Buffer Types
You may create a SapBuffer object using one of many predefined types. This has an effect on how

the actual buffer resources are allocated, and on how the object may be used with other classes,

such as SapTransfer and SapView.

Contiguous Memory Buffers (SapBuffer::TypeContiguous)

Buffers are allocated in Sapera LT Contiguous Memory, which is one large chunk of non-pageable

and non-moveable memory reserved by Sapera LT at boot time. Buffer data is thus contained in a

single memory block (not segmented). These buffers may be used as source and destination for

transfer resources.

Scatter-Gather Memory Buffers (SapBuffer::TypeScatterGather)

Buffers are allocated in noncontiguous memory (paged pool). Pages are locked in physical memory

so that a scatter-gather list may be built. This allows allocation of very large buffers to be used as

source and destination for transfer resources. The maximum amount of memory that may be

allocated depends on available memory, the operating system, and the application(s) used. For 32-

bit Windows, if the amount of system memory exceeds four GB, Sapera LT automatically uses

TypeScatterGatherPhysical instead.

Virtual Buffers (SapBuffer::TypeVirtual)

Similar to TypeScatterGather, except that the memory pages are not locked. This allows allocation

of very large buffers, but they cannot be used as source or destination for transfer resources.

Dummy Buffers (SapBuffer::TypeDummy)

Dummy buffers do not have any data memory. They may be used as placeholders by transfer

resources when there is no physical data transfer.

Physical Memory Buffers (SapBuffer::TypeUnmapped)

Buffers are allocated as a series of non-contiguous chunks of physical memory. You may not access

their data until they have been mapped to virtual memory addresses using the

SapBuffer::GetAddress method. This type of buffer is useful if the total amount of needed buffer

data exceeds the amount of available virtual memory addresses (2 GB under 32-bit Windows). To

avoid a shortage of virtual memory addresses, use the SapBuffer::ReleaseAddress method as soon

as you are done accessing their data. Note that you cannot acquire images into these buffers.

This buffer type is not supported in Sapera LT for 64-bit Windows.

Physical Scatter-Gather Memory Buffers (SapBuffer::TypeScatterGatherUnmapped)

These buffers are similar to TypePhysical, except that you can acquire images into them.

This buffer type is not supported in Sapera LT for 64-bit Windows.

Physical Scatter-Gather Memory Buffers (special case)

(SapBuffer::TypeScatterGatherPhysical)

These buffers are needed in 64-bit Windows for some frame grabbers (e.g. X64-CL iPro) which

feature DMA transfers to the host using 32-bit addresses. These frame grabbers do not support

acquisition in regular scatter-gather buffers (SapBuffer::TypeScatterGather), because they require

all physical addresses used during DMA transfers to be limited to 32-bit values.

82 • Working with Buffers Sapera LT User's Manual

Multiformat IR Buffers

Note: References to functions in the following section use the .NET syntax,

however the related C++ functions use similar names.

The multiformat buffer types SapFormat.RGB888_MONO8 and SapFormat.RGB161616_MONO16

contain both RGB and monochrome (typically near infrared (IR)) information, in 32-bit or 64-bit

format respectively. Use the SapBuffer.IsMultiformat method to verify if a buffer is a multiformat

buffer.

The SapBuffer.Copy or SapBuffer.SplitComponents methods can be used to extract either the RGB

or monochrome (IR) component into a separate buffer. The SapBuffer.MergeComponents method

can be used to merge separate components into the multiformat buffer type.

When using the SapBuffer.ReadElement method to access the buffer, the data is extracted as a

SapDataRGBA object, with the A component representing the monochrome (IR) portion.

If accessing the memory directly, for each line in the buffer, the first ¾ (left side) represents the

RGB data and the last ¼ (right side) represents the monochrome (IR) data.

Multiformat buffers use 2 pages; one page for RGB component and one page for the monochorme

(IR) component. When displaying multiformat buffers with the SapView class, use the AllPage and

Page properties to manage the current (active) page of the buffer (RGB or monochrome) to

display. The active page only applies when choosing which format to display when calling the

SapView.Show function.

For load and save operations, multiformat buffers only support the CRC and RAW formats.

Sapera LT User's Manual Working with Buffers • 83

Reading and Writing a Buffer
The simplest way to read or write data to a buffer resource is by accessing it element by element.

The ReadElement and WriteElement methods fulfill this purpose.

Sapera LT ++ – Access of a Buffer Object

The following demonstrates how to access data in an 8-bit monochrome SapBuffer object.

Accessing an 8-bit Buffer by Element

// Allocate and create a 640x480x8 buffer object

SapBuffer *pBuffer = new SapBuffer(1, 640, 480, SapFormatMono8);

BOOL success = pBuffer->Create();

// Write a constant value in the buffer. SapDataMono is a Sapera LT ++ class

// that encapsulates a Standard API monochrome data type.

success = pBuffer->WriteElement(100, 200, SapDataMono(128));

// Read back the value

SapDataMono data;

success = pBuffer->ReadElement(100, 200, &data);

// Release and free resources for SapBuffer object

success = pBuffer->Destroy();

delete pBuffer;

Accessing a Buffer by an Array of Elements

Accessing buffer data in this way is quite straightforward, but, unfortunately, it considerably slows

down access time. Alternately, you can access data by reading/writing an array of elements with

only one function call through the Read and Write methods. Here is a sample of their usage.

// Allocate and create a 640x480x8 buffer object

SapBuffer *pBuffer = new SapBuffer(1, 640, 480, SapFormatMono8);

BOOL success = pBuffer->Create();

// Create an array large enough to hold all buffer data

int size = 640 * 480 * sizeof(BYTE);

BYTE *dataBuf = new BYTE [size];

// Fill array with some values

...

// Write array to buffer resource

success = pBuffer->Write(0, size, dataBuf);

// Read back buffer data

success = pBuffer->Read(0, size, dataBuf);

// Release and free resources for SapBuffer object

success = pBuffer->Destroy();

delete pBuffer;

// Free the data buffer

delete [] dataBuf;

84 • Working with Buffers Sapera LT User's Manual

Accessing a Buffer Directly Through a Pointer

Although this is faster than the previous method, performance is still an issue because of the data

copying operations involved.

The fastest way to access buffer data is to obtain direct access through a pointer. The GetAddress

and ReleaseAddress methods initiate and end direct data access, respectively . The drawback of

this method is that you need to know the buffer dimensions, format, and pitch in order to correctly

access the data. The following code illustrates this.

// Allocate and create a 640x480 RGB 5-6-5 buffer object

SapBuffer *pBuffer =

 new SapBuffer(1, 640, 480, SapFormatRGB565, SapBuffer::TypeScatterGather);

BOOL success = pBuffer->Create();

// Get the buffer pitch in bytes

int pitch = pBuffer->GetPitch();

// Get the buffer data address

BYTE *pData;

success = pBuffer->GetAddress(&pData);

// Access the buffer data

for (int lineNum = 0; lineNum < 480; lineNum++)

{

 WORD *pLine = (WORD *) (pData + lineNum * pitch);

 for (pixelNum = 0; pixelNum < 640; pixelNum++)

 {

 // Process the current line

 }

}

// Release and free resources for SapBuffer object

success = pBuffer->Destroy();

delete pBuffer;

For more information on buffer data access functionality, see the Sapera LT ++ Programmer’s

Manual.

Sapera LT .NET – Access of a Buffer Element

The following demonstrates how to access data in an 8-bit monochrome SapBuffer object.

Accessing an 8-bit SapBuffer Object by Element Using C#

// Allocate and create a 640x480x8 buffer object

SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

bool success = buffer.Create();

// Write a constant value in the buffer

success = buffer.WriteElement(100, 200, new SapDataMono(128));

// Read back the value

SapDataMono data = new SapDataMono();

success = buffer.ReadElement(100, 200, data);

// Release resources for SapBuffer object

success = buffer.Destroy();

// Free all objects

data.Dispose();

buffer.Dispose();

Sapera LT User's Manual Working with Buffers • 85

Equivalent Code for Visual Basic .NET

' Allocate and create a 640x480x8 buffer object

Dim buffer As SapBuffer = New SapBuffer(1, 640, 480, SapFormat.Mono8, _

 SapBuffer.MemoryType.ScatterGather)

Dim success As Boolean = buffer.Create()

' Write a constant value in the buffer

success = buffer.WriteElement(100, 200, New SapDataMono(128))

' Read back the value

Dim data As SapDataMono = New SapDataMono()

success = buffer.ReadElement(100, 200, data)

' Release resources for SapBuffer object

success = buffer.Destroy()

' Free all objects

data.Dispose()

buffer.Dispose()

Equivalent Code for C++

// Allocate and create a 640x480x8 buffer object

SapBuffer^ pBuffer = gcnew SapBuffer(1, 640, 480, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

bool success = pBuffer->Create();

// Write a constant value in the buffer

success = pBuffer->WriteElement(100, 200, gcnew SapDataMono(128));

// Read back the value

SapDataMono^ pData = gcnew SapDataMono();

success = pBuffer->ReadElement(100, 200, pData);

// Release resources for SapBuffer object

success = pBuffer->Destroy();

// Free all objects

// Note that the delete operator actually calls the Dispose method

delete pData;

delete pBuffer;

86 • Working with Buffers Sapera LT User's Manual

Sapera LT .NET – Access of a Buffer by an Array of Elements

Accessing buffer data in this way is quite straightforward, but, unfortunately, it considerably slows

down access time. Alternately, you can access data by reading/writing an array of elements with

only one function call through the Read and Write methods.

Example Code in C#

// Allocate and create a 640x480x8 buffer object

SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.Mono8,

 SapBuffer.MemoryType.ScatterGather);

bool success = buffer.Create();

// Create an array large enough to hold all buffer data

int size = 640 * 480;

byte[] dataBuf = new byte[size];

// Fill array with some values

// ...

// Pin the array to avoid Garbage collector move it

GCHandle dataBufHandle = GCHandle.Alloc(dataBuf, GCHandleType.Pinned);

IntPtr dataBufAddress = dataBufHandle.AddrOfPinnedObject();

// Write array to buffer resource

success = buffer.Write(0, size, dataBufAddress);

// Read back buffer data

success = buffer.Read(0, size, dataBufAddress);

// Unpin the array

dataBufHandle.Free()

// Release resources and free SapBuffer object

success = buffer.Destroy();

buffer.Dispose();

Equivalent Code for Visual Basic .NET
' Allocate and create a 640x480x8 buffer object

Dim buffer As New SapBuffer(1, 640, 480, SapFormat.Mono8, SapBuffer.MemoryType.ScatterGather)

Dim success As Boolean = buffer.Create()

' Create an array large enough to hold all buffer data

Dim size As Integer = 640 * 480

Dim dataBuf As Byte() = New Byte(size - 1) {}

' Fill array with some values

' ...

' Pin the array to avoid Garbage collector move it

Dim dataBufHandle As GCHandle = GCHandle.Alloc(dataBuf, GCHandleType.Pinned)

Dim dataBufAddress As IntPtr = dataBufHandle.AddrOfPinnedObject()

' Write array to buffer resource

success = buffer.Write(0, size, dataBufAddress)

' Read back buffer data

success = buffer.Read(0, size, dataBufAddress)

' Unpin the array

dataBufHandle.Free()

' Release resources and free SapBuffer object

success = buffer.Destroy()

buffer.Dispose()

Sapera LT User's Manual Working with Buffers • 87

Equivalent Code for C++

// Allocate and create a 640x480x8 buffer object

SapBuffer^ pBuffer = gcnew SapBuffer(1, 640, 480, SapFormat::Mono8,

 SapBuffer::MemoryType::ScatterGather);

bool success = pBuffer->Create();

// Create an array large enough to hold all buffer data

int size = 640 * 480 * sizeof(char);

char* dataBuf = new char[size];

// Fill array with some values

// ...

// Write array to buffer resource

success = pBuffer->Write(0, size, dataBuf);

// Read back buffer data

success = pBuffer->Read(0, size, dataBuf);

// Release resources for SapBuffer object

success = pBuffer->Destroy();

// Free all objects

// Note that, for the SapBuffer object, the delete operator

// actually calls the Dispose method

delete pBuffer;

delete [] dataBuf;

88 • Working with Buffers Sapera LT User's Manual

Sapera LT .NET – Access of a Buffer via a Pointer

Although this is faster than the previous method, performance is still an issue because of the data

copying operations involved.

The fastest way to access buffer data is to obtain direct access through a pointer. The GetAddress

and ReleaseAddress methods initiate and end direct data access, respectively. The drawback of this

method is that you need to know the buffer dimensions, format, and pitch in order to correctly

access the data.

Example Code in C#

// Allocate and create a 640x480 RGB 5-6-5 buffer object

SapBuffer buffer = new SapBuffer(1, 640, 480, SapFormat.RGB565,

 SapBuffer.MemoryType.ScatterGather);

bool success = buffer.Create();

// Get the buffer pitch in bytes

int pitch = buffer.Pitch;

// Get the buffer data address

IntPtr address;

success = buffer.GetAddress(out address);

unsafe

{

 char* pData = (char*)address.ToPointer();

 // Access the buffer data

 for (int lineNum = 0; lineNum < 480; lineNum++)

 {

 System.UInt16* pLine = (System.UInt16 *) (pData + lineNum * pitch);

 for (int pixelNum = 0; pixelNum < 640; pixelNum++)

 {

 // Process the current line

 }

 }

}

// Release and free resources for SapBuffer object

// Note that the delete operator actually calls the Dispose method

success = buffer.Destroy();

buffer.Dispose();

Note: Direct access through a memory pointer is not available for Visual Basic .NET.

For more information on buffer data access functionality, see the Sapera LT .NET Programmer’s

Manual.

Sapera LT User's Manual Working with Buffers • 89

Processing Buffers
To process images while other are being acquired, more than one image buffer is required. When

these buffers are linked to an acquisition device using a transfer resource, images are acquired into

these multiple buffers in a circular progression, writing into the first buffer, then the second, and so

forth, until the last buffer is reached, whereupon the first buffer is overwritten and the cycle

continues. While the first buffer is being processed, images are being acquired into the next buffers

in the group.

For example, with 4 image buffers:

However, this only allows for processing of all acquired images when the average processing time

is less than the time required to acquire one image. When processing cannot keep up with the

acquisition frame rate, it is often useful to have a special buffer, not part of the circular list, for

throwing away images that cannot be processed. In Sapera LT, this is called the trash buffer.

API support for allocating buffers:

• Use one instance of the SapBuffer or SapBufferWithTrash classes, both of which can be

given a buffer count

API support for linking buffers together:

• Use one instance of the SapTransfer class, or one of its derived classes, for example,

SapAcqToBuf or SapAcqDeviceToBuf.

90 • Working with Buffers Sapera LT User's Manual

Buffer State
Buffers can be in one of two states:

• Empty, meaning that images may be acquired in the buffer

• Full, meaning that unprocessed data is still present in the buffer

Buffer state changes between empty and full as follows:

• All buffers are initially empty

• As images are acquired into the buffers, the transfer hardware sets their state to full

• When the transfer hardware needs a new buffer for an image, it can either consider or

ignore the current buffer state, depending on the transfer cycling mode

• It is the responsibility of application code to set the state back to empty when the

buffers are available again for image acquisition

Note that this is irrelevant for trash buffers.

API support for managing buffer state:

• Sapera LT ++: Although you can use the GetState and SetState methods of the

SapBuffer and SapBufferWithTrash classes, it is generally preferable to rely on the auto-

empty mechanism in the SapTransfer, SapProcessing, and SapView classes.

• .NET: Although you can use the State property of the SapBuffer and SapBufferWithTrash

classes, it is generally preferable to rely on the auto-empty mechanism in the

SapTransfer, SapProcessing, and SapView classes.

Auto-Empty Mechanism
Refers to an application configurable mechanism by which buffer state is automatically set to

empty.

There are four possible scenarios:

• Buffer state is set to empty by the transfer (SapTransfer), just after the transfer callback

function (if any) in the application returns. This is the default behavior.

• Buffer state is set to empty by the processing (SapProcessing), right after the image in

the buffer has been processed, and just before calling the processing callback function (if

any) in the application.

• Buffer state is set to empty by the view (SapView), right after the image in the buffer has

been displayed, and just before calling the view callback function (if any) in the application.

• Buffer state is set to empty directly in the application.

API support for managing the auto-empty mechanism:

• Sapera LT ++: Use the SetAutoEmpty and GetAutoEmpty methods in the SapTransfer,

SapProcessing, and SapView classes.

• .NET: Use the AutoEmpty property in the SapTransfer, SapProcessing, and SapView

classes.

Sapera LT User's Manual Working with Buffers • 91

Transfer Cycling Modes
Refers to the criteria used by the transfer when deciding in which buffer the next image will be

stored.

In the Off mode:

• Always transfer to the current buffer

• Ignore the buffer state

• Ignore the presence of a trash buffer

In the Asynchronous mode:

• Always transfer to the next buffer

• Ignore the buffer state

• Ignore the presence of a trash buffer

92 • Working with Buffers Sapera LT User's Manual

In the Synchronous mode:

• (Case 1) If the next buffer is empty, then transfer to the next buffer

• (Case 2) If the next buffer is full, then transfer to the current buffer

• Ignore the presence of a trash buffer

Example of case 1:

Example of case 2:

In the Next Empty mode:

• (Case 1) If the next buffer is empty, then transfer to the next buffer

• (Case 2) If the next buffer is full, transfer to next empty buffer in the list

• (Case 3) If all buffers are full, then transfer to the current buffer

• Ignore the presence of a trash buffer

Example of case 1:

Example of case 2:

Sapera LT User's Manual Working with Buffers • 93

Example of case 3:

In the Synchronous With Trash mode:

• (Case 1) If the next buffer is empty, then transfer to the next buffer

• (Case 2) If the next buffer is full, then transfer to the trash buffer

• (Case 3) Repeat transferring to the trash buffer as long as the next buffer is full

• Buffer state is irrelevant for the trash buffer

Example of case 1:

Example of case 2:

Example of case 3:

94 • Working with Buffers Sapera LT User's Manual

In the Synchronous Next Empty With Trash mode:

• (Case 1) If the next buffer is empty, then transfer to the next buffer

• (Case 2) If the next buffer is full, transfer to next empty buffer in the list

• (Case 3) If all buffers are full, then transfer to trash buffer

• (Case 4) Repeat transferring to the trash buffer as long as all buffers are full

• Buffer state is irrelevant for the trash buffer

Example of case 1:

Example of case 2:

Example of case 3:

Example of case 4:

API support for managing the transfer cycling mode:

• (Sapera LT ++) Use the GetCycleMode and SetCycleMode methods in the SapXferPair

class

• (.NET) Use the Cycle property in the SapXferPair class

Sapera LT User's Manual Working with Buffers • 95

Execution flow for processing and displaying images
Example 1: The application only needs to read time stamp information of acquired images

With Sapera LT ++:

• The application transfer callback function gets called

• This function calls the GetCounterStamp function of the SapBuffer class to retrieve the time

stamp, and returns

• The buffer state is automatically set to empty by the SapTransfer class

With the .NET API:

• The application handler function for the XferNotify event of the SapTransfer class gets called

• This function reads the CounterStamp property of the SapBuffer class to retrieve the time

stamp, and returns

• The buffer state is automatically set to empty by the SapTransfer class

Example 2: The application only needs to process acquired images (no display)

With Sapera LT ++ (initialization):

• Create a new class derived from SapProcessing, the overriden Run function of this class will

handle the actual processing

• Call the SetAutoEmpty(FALSE) method of the SapTransfer class to prevent buffers from

being set to empty in this class

• Call the SetAutoEmpty(TRUE) method of the SapProcessing class to set buffers to empty in

this class

With Sapera LT ++ (after each acquired image):

• The application transfer callback function gets called

• This function calls the Execute function of the SapProcessing class, and returns

• This eventually calls the overriden Run function in the application

• This function performs the actual processing on the image, and returns

• The buffer state is automatically set to empty by the SapProcessing class

• The application processing callback function (if any) gets called

With the .NET API (initialization):

• Create a new class derived from SapProcessing, the overriden Run function of this class will

handle the actual processing

• Set the AutoEmpty property of the SapTransfer class to False to prevent buffers from being

set to empty in this class

• Set the AutoEmpty property of the SapProcessing class to True to set buffers to empty in

this class

96 • Working with Buffers Sapera LT User's Manual

With the .NET API (after each acquired image):

• The application handler function for the XferNotify event of the SapTransfer class gets called

• This function calls the Execute function of the SapProcessing class, and returns

• This eventually calls the overriden Run function in the application

• This function performs the actual processing on the image, and returns

• The buffer state is automatically set to empty by the SapProcessing class

• The application handler function for the ProcessingDone event of the SapProcessing class (if

any) gets called

Example 3: The application needs to process acquired images before displaying the resulting

processed images

With Sapera LT ++ (initialization):

• Create a new class derived from SapProcessing, the overriden Run function of this class will

handle the actual processing

• Call the SetAutoEmpty(FALSE) method of the SapTransfer class to prevent buffers from

being set to empty in this class

• Call the SetAutoEmpty(FALSE) method of the SapProcessing class to prevent buffers from

being set to empty in this class

• Call the SetAutoEmpty(TRUE) method of the SapView class to set buffers to empty in this

class

With Sapera LT ++ (after each acquired image):

• The application transfer callback function gets called

• This function calls the Execute function of the SapProcessing class, and returns

• This eventually calls the overriden Run function in the application

• This function performs the actual processing on the image, and returns

• The application processing callback function gets called

• This function calls the Show function of the SapView class to display the processed image,

and returns

• After image display is done, the buffer state is automatically set to empty by the SapView

class

• The application view callback function (if any) gets called

Sapera LT User's Manual Working with Buffers • 97

With the .NET API (initialization):

• Create a new class derived from SapProcessing, the overriden Run function of this class will

handle the actual processing

• Set the AutoEmpty property of the SapTransfer class to False to prevent buffers from being

set to empty in this class

• Set the AutoEmpty property of the SapProcessing class to False to prevent buffers from

being set to empty in this class

• Set the AutoEmpty property of the SapView class to True to set buffers to empty in this

class

With the .NET API (after each acquired image):

• The application handler function for the XferNotify event of the SapTransfer class gets called

• This function calls the Execute function of the SapProcessing class, and returns

• This eventually calls the overriden Run function in the application

• This function performs the actual processing on the image, and returns

• The application handler function for the ProcessingDone event of the SapProcessing class

gets called

• This function calls the Show function of the SapView class to display the processed image,

and returns

• The buffer state is automatically set to empty by the SapView class

• The application handler function for the DisplayDone event of the SapView class (if any)

gets called

98 • SapFlatField Coefficient Calibration Sapera LT User's Manual

SapFlatField Coefficient
Calibration
A number of Teledyne DALSA frame grabbers and cameras support hardware flat field calibration.

The following section provides an overview of how to use the Sapera LT SapFlatField class to

perform flat field calibration.

Flat field correction uses 2 coefficients (offset and gain) per pixel to compensate for fixed pattern

noise (FPN) and photo response non-uniformity (PRNU).

• FPN is the variation in pixel response without incident light (also known as dark current). It

is noise signal generated by the background voltage present in the sensor. The flat field

offset coefficients are used to correct for this noise. To perform FPN calibration using

SapFlatField::ComputeOffset, a number of dark images are averaged (i.e, all light is

blocked from entering the sensor using the lens cap). The percentage of zero pixels allowed

in the averaged images can be set using the SapFlatField::SetBlackPixelPercentage (too

many zero pixels indicates the camera’s black level is too high and information is being

clipped; adjust the camera settings accordingly).

• PRNU is the variation in pixel response to a uniform amount of light. The flat field gain

coefficients are used to correct for this response non-uniformity such that all pixels output

the same value when exposed to the same incident light. To perform PRNU calibration using

SapFlatField::ComputeGain, a number of white images are averaged, such that the

camera is close to, but not at saturation, is used. The gain coefficient is calculated for each

pixel such that it reaches a specified target value below saturation.

For both FPN and PRNU calibration, the greater the number of images averaged reduces the effects

of random noise.

Video
Output

Video

Typical Digital Processing Chain

(monochrome)

FPN correction

(Offset coefficient)
PRNU correction

(Gain coefficient)
Offset Gain

- X -/+ X

Flat Field Correction

The ComputeOffset function must be called before the ComputeGain function. To apply the

software flat field correction on an image, use the SapFlatField::Execute function. For hardware

flat field correction, the flat field correction file is loaded to the device and enabled on the

hardware; refer to the device documentation for more information.

The system offset and gain applied after the flat field correction are typically used to maximize the

image dynamic range for the typical image scene for the application.

Sapera LT User's Manual SapFlatField Coefficient Calibration • 99

Flat Field File Format
Flat field calibration creates an 8 or 16-bit TIF file that contains the offset and gain coefficients. The

buffer is the same width as the acquired image but twice the height of the acquired image height

(the first half contains the offset coefficients, the second half the gain coefficients).

The 8 or 16 bit format is determined by the format of the buffer passed to the

SapFlatField::ComputeOffset / ComputeGain functions. 16-bit files are used for 10, 12, 14, or 16

bit output format. In general, the sensor’s highest output format should be used to calibrate the

flat field coefficients. A 16-bit flat field coefficient file can be used with lower output formats by

setting an offset factor (SapFlatField::SetOffsetFactor).

TIFF File Structure as used by Sapera LT

• TIFF header — as per TIFF 6.0 specification

• Image data width is same as acquired image width

• Image data height is twice the acquired image height

• Upper half of image is offset data

• Lower half is gain data

• Image pixel format is same as acquired image format

Flat Field Correction Formula
For each pixel, flat-field correction is performed according to the following formula:

correctedValue = (originalValue – offset) * (gain / gainDivisor + gain base)

Gain Divisor

For 8-bit gain coefficients, the gain divisor is typically equal to 128, so that a gain value between 0

and 255 becomes a value between 0 and 2. It is then set to the acquisition device gain divisor

value when calling the Create method (the SapFlatField::SetGainDivisor method is only used when

operating without hardware support). The gainDivisor and gain base are used to convert a floating

point gain value to an integer value that can be saved in a .TIFF image.

Gain Base

For gain base, if supported by the acquisition device (for example, the Genie TS), it is retrieved

from the device after calling the Create method. For all other acquisition devices, and for software

based flat field correction, the initial value for this attribute is 0, and the application code can call

SetGainBase if required.

100 • SapFlatField Coefficient Calibration Sapera LT User's Manual

Offset Coefficients
The offset coefficient for FPN correction is calculated on a per pixel basis using the average pixel

value at Xn, Yn minus the DN value corresponding to the lower bound representing less than 1% of

the pixel distribution (calculated using ~3σ standard deviations from the histogram mean of the

averaged black images).

Offset coefficient (Xn, Yn) = average pixel value (Xn, Yn) - DN value of ~3σ.

This method preserves the dynamic range and reduces the number of pixels that are clipped at

zero (which results in loss of image data, even if offset and gain are subsequently applied to adjust

the black threshold).

The SapFlatField::SetOffsetMinMax can be used to limit the possible gain values. If pixels reach

this limit, they are flagged as defective when SapFlatField::EnableClippedGainOffsetDefects =

TRUE (default).

Gain Coefficients
Gain coefficients are calculated after offset coefficients are applied. Gain coefficients are calculated

such that all pixels reach the specified target value (or the maximum pixel value in the white

image). The SapFlatField::SetGainMinMax can be used to limit the possible gain values. If pixels

reach this limit, they are flagged as defective when

SapFlatField::EnableClippedGainOffsetDefects = TRUE (default).

Sapera LT User's Manual SapFlatField Coefficient Calibration • 101

Pixel Replacement
For the black and white images, pixel values higher/lower than

(average pixel value +/- deviationMax)

are considered as defective pixels. By default, the maximum deviation is 0.25 x maximum pixel

value (for example for 8-bit images the maximum deviation is 63).

The maximum deviations for the black and white images are set using the

SapFlatField::SetDeviationMaxBlack / SetDeviationMaxWhite functions.

Pixel replacement is enabled/disabled using SapFlatField::EnablePixelReplacement. Pixels are

replaced using the pixel to its immediate left, other than the first pixel of a line, which uses the

pixel to the right.

To calibrate the camera’s flat field coefficients:
1. Configure the camera to the required frame rate and exposure timing, plus adjust the light

level for normal operation. If used, any horizontal or vertical binning should also be applied.

2. The lens should be at the required magnification and aperture and slightly unfocused to

avoid introducing granularity or details in the reference image (when calibration is complete,

refocus the lens).

3. As the white reference is located at the object plane, any markings or contaminants on its

surface (that is, dust, scratches, smudges) will end up in the calibration profile of the

camera. To avoid this, use a clean white plastic or ceramic material rather than trying to

rely on a paper reference. (Ideally, the white object will be moving during the calibration

process, as the averaging process of the camera will diminish the effects of any small

variation in the white reference.)

4. Adjust the system gain until the peak intensity is at the desired DN level and then calibrate

the fixed pattern noise (FPN) using the SapFlatField::ComputeOffset function. Use a lens

cap to ensure that no light reaches the sensor.

5. Once complete, remove the lens cap and perform a photo response non-uniformity (PRNU)

calibration using SapFlatField::ComputeOffset using the desired target value (in DN) . You

want all the pixels to match. This target value should be higher than the peak values you

saw while first setting up the camera.

6. The system gain remains as first set.

102 • SapFlatField Coefficient Calibration Sapera LT User's Manual

Code Samples using Sapera LT
The following C++ code sample shows Flat Field manual calibration using Sapera LT.

// Rely on the SapFlatField class to automatically create the offset and gain buffers with the

// correct dimensions and format, but perform the calibration manually

// pAcquisition is an existing SapAcquisition object

// pBuffer is an existing SapBuffer object containing an acquired image.

SapFlatField* pFlatField = new SapFlatField(pAcquisition);

BOOL success = pFlatField->Create();

SapBuffer* pBufferOffset = pFlatField->GetBufferOffset();

SapBuffer* pBufferGain = pFlatField->GetBufferGain();

// Can also use the following:

// int bufWidth = pBufferOffset->GetWidth();

// int bufWidth = pBufferGain->GetWidth();

int bufWidth = pBuffer->GetWidth();

// Can also use the following:

// int bufHeight = pBufferOffset->GetHeight();

// int bufHeight = pBufferGain->GetHeight();

int bufHeight = pBuffer->GetHeight();

// Can also use the following:

// int bufFormat = pBufferOffset->GetFormat();

// int bufFormat = pBufferGain->GetFormat();

int bufFormat = pBuffer->GetFormat();

// This is for 8-bit buffers.

BYTE* pBufData;

success = pBuffer->GetAddress(&pBufData);

BYTE* pOffsetData;

success = pBufferOffset->GetAddress(&pOffsetData);

BYTE* pGainData;

success = pBufferGain->GetAddress(&pGainData);

int gainDivisor = pFlatField->GetGainDivisor();

// Code to perform manual calibration using pBufData, pOffsetData,

// pGainData, and gainDivisor goes here

// …

success = pFlatField->Destroy();

delete pFlatField;

Sapera LT User's Manual Deploying a Sapera Application • 103

Deploying a Sapera Application

When your application is ready to be delivered, you may need to create a procedure that will install

the appropriate component to the target system. The following sections detail the tasks that your

installation program needs to perform.

Runtime Installations
Two types of Sapera LT runtime installations are available when deploying your application:

• Sapera LT only

• Sapera LT with CamExpert

The type of runtime installation required depends on whether your application requires the

CamExpert utility.

The appropriate device driver must be installed along with the installation of the Sapera LT

runtimes. This topic is further discussed in this section.

Installing Sapera LT Runtimes and Sapera LT Compatible Drivers

The Sapera LT Installation Program automatically handles the task of copying files and making

Windows Registry changes, as dictated by your selection of Sapera LT (full development or runtime

components only) and the selected device drivers. When integrating Sapera LT and the Sapera LT

device driver installations into your system, Teledyne DALSA suggests that the Sapera LT Install

Program be invoked within your own software installation program.

The Sapera LT installation is supplied in three forms:

• Developer full installations

• Runtime only installation

• CamExpert tool only installation

The Developer installation is accessible from the Sapera LT DVD browser and contains all Sapera LT

components (demos, tools, documentation, and the Sapera LT runtimes).

The Runtime version contains only the components required to execute your application. It is

recommended that you install the Runtime components only on systems not used for development.

You will find the Sapera LT installations in the Sapera Vision Software\Software\Sapera LT\

directory on the Sapera Essential, Sapera Architect, or Sapera Nitrous distribution disk.

104 • Deploying a Sapera Application Sapera LT User's Manual

Unlike the Sapera LT installation, there is only one way to perform Sapera LT driver installations. A

driver installation contains the device driver, the device’s user’s manual and, in some cases, some

device specific demos.

Frame grabber product drivers or GigE Vision camera framework packages are found on the Sapera

distribution disk within their own folders as shown in the following screen image.

Teledyne DALSA Installers
Both Sapera LT and the driver installations share the same installer technology. As a result, the

following discussion applies to both.

Note: You must reboot after the installation of Sapera LT. However, to streamline the
installation process, you may install Sapera LT (without rebooting), the required device

drivers and then reboot.

Teledyne DALSA's installers can be started in two ways:

1. Normal Mode

This is the interactive mode provided by default. It is initiated by invoking the

setup.exe program. The installation proceeds normally as if it was started from

Windows Explorer or the Windows command line.

2. Silent Mode

This mode requires no user interaction. Any user input is provided through a “response”

file. Nothing is displayed by the installer.

Note: During driver installation, Windows Digital Signature and Logo Testing warnings can
be safely ignored.

Sapera LT User's Manual Deploying a Sapera Application • 105

Silent Mode Installation

Silent Mode installation is recommended when integrating Teledyne DALSA products into your

software installation. The silent installation mode allows the Sapera LT installation to proceed

without the need for mouse clicks or other input from a user.

Two steps are required:

• Preparation of a response file to emulate a user.

• Invoking the Sapera LT installer with command options to use the prepared response file.

Creating a response file

The installer response file is created by performing a Sapera LT installation with a command line

switch "-r". The response file is automatically named setup.iss which is saved in the \windows

folder. One simple method is to execute the Sapera LT installer from within a batch file. The batch

file will have one command line.

As an example, the command line is:

SaperaLTSDKSetup -r

Running a Silent Mode Installation

A Sapera LT silent installation, whether done alone or within a larger software installation requires

the Sapera LT executable and the generated response file setup.iss.

Execute the Sapera LT installer with the following command line:

SaperaLTSDKSetup -s -f1".\setup.iss"

where the –s switch specifies the silent mode and the –f1 switch specifies the location of the

response file. In this example, the switch –f1".\setup.iss" specifies that the setup.iss file is in the

same folder as the Sapera LT installer.

Note: For Sapera LT 8.10, the installation process has been modified; a new prompt has
been added for installing 'Teledyne Dalsa frame grabbers and CameraLink cameras' only,
'GigE-Vision cameras and the Sapera Network Imaging Package' only, or 'All acquisition

components'. Therefore existing response files for previous versions need to be updated
and replaced.

106 • Deploying a Sapera Application Sapera LT User's Manual

Installer Error Codes

The following table describes the error codes returned by the installer during a silent installation.

Return code Description

0 Success

-1 General error

-2 Invalid mode

-3 Required data not found in the Setup.iss file (response file)

-4 Not enough memory available

-5 File does not exist

-6 Cannot write to response file

-7 Unable to write to the log file

-8 Path to the InstallShield silent response file is not valid

-9 Not a valid list type (string or number)

-10 Data type is not valid

-11 Unknown error during set up

-12 Dialog boxes are out of order

-51 Cannot create the specified folder

-52 Cannot access the specified file or folder

-53 A selected option is not valid

Sapera LT User's Manual Deploying a Sapera Application • 107

Silent Mode Uninstall

Similar to a silent installation, a response file must be prepared first as follows.

Creating a Response File

The installer response file is created by performing a software un-installation with a command line

switch "-r". The response file is automatically named setup_uninstall.iss which is saved in the

\windows folder. If a specific directory is desired, the switch “–f1” is used.

As an example, to save a response file in the same directory as the installation executable of the

Sapera LT SDK, the command line would be:

SaperaLTSDKSetup.exe –r –f1”.\setup_uninstall.iss”

Running a Silent Mode Uninstall

Similar to the device driver silent mode installation, the un-installation requires the device driver

executable and the generated response file setup.iss.

Execute the Sapera LT SDK installer with the following command line:

SaperaLTSDKSetup.exe -s -f1".\setup_uninstall.iss"

Where the –s switch specifies the silent mode and the –f1 switch specifies the location of the

response file. In this example, the switch –f1".\setup_uninstall.iss" specifies that the

setup_uninstall.iss file be in the same folder as the software installer.

108 • Deploying a Sapera Application Sapera LT User's Manual

Compiler Run-time Redistribution
When deploying your application you also need to redistribute the runtime required by the compiler

used for generating your application. In fact, the Sapera LT runtime installation program does

install the version of compiler runtime used by Sapera LT libraries but not necessarily the one used

by your application.

The diagram below shows the runtime architecture dependency. “Compiler runtime X” provides

support for the calls made by your application to the standard compiler libraries (direct calls) while

“Compiler runtime Y” provides support for the calls made by Sapera LT library to the standard

compiler libraries (indirect calls). Several compiler versions can coexist in the same target system.

Sapera LT User's Manual Contact Information • 109

Contact Information

The following sections provide sales and technical support contact information.

Sales Information

Visit our web site: www.teledynedalsa.com/en/contact/contact-sales/

Email: mailto:info@teledynedalsa.com

Technical Support
Submit any support question or request via our web site:

Technical support form via our web page:

Support requests for imaging product installations

www.teledynedalsa.com/en/support/options/
Support requests for imaging applications

Camera support information

Product literature and driver updates

When encountering hardware or software problems, please have the following documents included

in your support request:

▪ The Sapera Log Viewer .txt file

▪ The PCI Diagnostic PciDiag.txt file (for frame grabbers)

▪ The Device Manager BoardInfo.txt file (for frame grabbers)

Note, the Sapera Log Viewer and PCI Diagnostic tools are available from the Windows

start menu shortcut Start•All Programs•Teledyne DALSA•Sapera LT.

The Device Manager utility is available as part of the driver installation for your Teledyne
DALSA device and is available from the Windows start menu shortcut Start•All
Programs•Teledyne DALSA•<Device Name>•Device Manager.

https://www.teledynedalsa.com/en/contact/contact-sales/
mailto:info@teledynedalsa.com
https://www.teledynedalsa.com/en/support/options/

